SPIXIANA

Zeitschrift für Zoologie

$$
31^{\text {st }} \text { July }-5^{\text {th }} \text { August }
$$

Posters

SP|XIANA

ZEITSCHRIFT FÜR ZOOLOGIE
 published by the

BAVARIAN STATE COLLECTION OF ZOOLOGY
 (ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN)

SPIXIANA publishes original contributions to zoology, preferably to the fields of taxonomy, morphology, phylogeny, and zoogeography.

One volume with two issues is published each year.
Monographs can be published as SPIXIANA Supplement.
Editor-in-Chief: Gerhard Haszprunar
Managing Editors: Roland Melzer, Michael Raupach, Michael Schrödl
Executive Editor: Angela Pillukat
Editorial board

Michael Balke
Frank Glaw
Axel Hausmann
Lars Hendrich

Marion Kotrba
Bernhard Ruthensteiner
Ulrich Schliewen Stefan Schmidt

Andreas Segerer Martin Spies Markus Unsöld
Anneke van Heteren

ZOOLOGISCHE STAATSSAMMLUNG MÜNCHEN Münchhausenstraße 21, 81247 München, Germany Tel. +49 (0)89 8107-0 - Fax +49 (0)89 8107-300

E-mail: SPIXIANA @snsb.de
www.zsm.mwn.de/die-zsm/spixiana/

> Bibliographic information published by the Deutsche Nationalbibliothek
> The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

Copyright © 2022 by Verlag Dr. Friedrich Pfeil, München
All rights reserved.
Except for research purposes, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner.
Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the publisher, Verlag Dr. Friedrich Pfeil, Wolfratshauser Straße 27, 81379 München, Germany.

ISSN 0177-7424

Zeitschrift für Zoologie

Supplement 30 B

Edited by
Martin Heß
LMU Munich, Germany

Hosted by

Sponsored by

Verlag Dr. Friedrich Pfeil

Conchology, Inc.

GeoBio-
Center
 LMU München

> The Malacological Society of London der Bayerischen Stastssammang fur Pallantologre and Geologge Menchen e. V,

गFG Deutsche Forschungsgemeinschaft

 diversity an Octin Abcesa Journal by MDPI

Citation Examples

Groh, K. \& Neiber, M. T. 2022. The Pomatiidae of Central Canary Islands - just conchological variability or misjudged biodiversity. In: Bergmeier, F. S., Brenzinger, B., Neusser, T. P. (eds). Spixiana Supplement 30 B, Munich, p. 20, doi 10.23788/SPX-Suppl30B.

Jörger, K. M., Yap-Chiongco, M., Kocot, K. M. \& Bergmeier F. S.. 2022. Aloha! First shallow-water Solenogastres form Hawai’i. In: Bergmeier, F. S., Brenzinger, B., Neusser, T. P. (eds). Spixiana Supplement 30 B, Munich, p. 60, doi 10.23788/SPX-Suppl30B.

Bergmeier, F. S., Brenzinger, B., Gensler, H., Haszprunar, G., Hawe, A., Heß, M., Hobelsberger, L., Jörger, K. M., Kunze, T., Kohnert, P. C., Neuser, T. P., Pinkau, C., Schrödl, M. , Schwabe, E. \& Wild E. 2022. 20 years of 3D microanatomical research by Munich malacologists around Prof. Haszprunar - a synopsis. In: Bergmeier, F. S., Brenzinger, B., Neusser, T. P. (eds). Spixiana Supplement 30 B, Munich, p. 67, doi 10.23788/SPX-Suppl30B.

Contents

Welcome to the WCM 2022 5
Symposia of the WCM 2022 6
Posters (sorted alphabetically)
Symposia and Open Sessions
Exploration, Biodiversity and Systematics of Molluscs: A Symposium in Honour of Philippe Bouchet 12
Mollusc Evolutionary History 29
American Malacological Society President's Symposium: Molluscan Conservation 33
Continental Molluscs Facing Environmental Changes 35
Systematics and Evolution of (not only Marine) Heterobranchia 40
The Ecology of Fossil and Extant Molluscs 47
Volunteers in Malacology 51
The EvoDevo Corner 52
Insular Ecosystems as Cradles of Mollusc Biodiversity and Evolution 53
Open session: Species Delineation 56
Open session: The Malacological Community 57
Open session: The Neglected Classes 60
Open session: Diversification and Speciation in Terrestrial Molluscs 62
Open session: Phylogeny 63
Open session: Diversity and Distribution 64
Open session: Genomics 65
Open session: Morphology 67

Organizing Committee

Franziska S. Bergmeier (LMU Munich, Germany)
Bastian Brenzinger (ZSM, Munich, Germany)
Zeyuan Chen (ZSM, Munich, Germany)
Andreas Dobler (TU Munich, Germany)
Jürgen Geist (TU Munich, Germany)
Heidi Gensler (LMU Munich, Germany)
Gerhard Haszprunar (Chair of Systematic Zoology, LMU Munich, Germany)
Martin Heß (LMU Munich, Germany)
Juan Moles (Universidad de Barcelona, Spain)
Timea Neusser (LMU Munich, Germany)
Alexander Nützel (Geobiocenter LMU Munich, Germany)
Bernhard Ruthensteiner (ZSM, Munich, Germany)
Michael Schrödl (ZSM, Munich, Germany)

Scientific Organizing Committee

Christian Albrecht (Justus-Liebig-University Giessen, Germany)
Franziska Bergmeier (LMU Munich, Germany)
Bastian Brenzinger (ZSM, Munich, Germany)
Katie Collins (The Natural History Museum, London, United Kingdom)
Kenneth DeBaets (GeoZentrum Nordbayern, Erlangen, Germany)
Mariel Ferrari (Instituto Patagónico de Geología y Paleontología, Puerto Madryn, Argentina)
Salomé Granai (GéoArchPal, GéoArchÉon, Vigneulles-lès-Hattonchâtel, France)
Kenneth A. Hayes (Director of the Pacific Center for Molecular Biodiversity, Bernice Pauahi Bishop Museum, Hawaii, USA)
Anna Holmes (National Museum Wales, Cardiff, United Kingdom)
Katharina M. Jörger (ZSM, Munich, Germany)
Lucie Juřičková (Charles University, Prague, Czech Republic)
Andrzej Kaim (Polish Academy of Sciences, Warsaw, Poland)
Yuri Kantor (Russian Academoy of Sciences, Moscow, Russia)
Ondřej Korábek (Charles University, Prague, Czech Republic)
Juan Moles (Universidad de Barcelona, Spain)
Thomas Neubauer (Justus-Liebig-University Giessen, Germany)
Timea Neusser (LMU Munich, Germany)
Alexander Nützel (SNSB-Bavarian State Collection for Palaeontology and Geology, Munich, Germany)
Nicolas Puillandre (Muséum national d'Histoire naturelle, Paris, France)
Ben Rowson (National Museum of Wales, Cardiff, United Kingdom
Simon Schneider (CASP, Cambridge, United Kingdom),
Aleksandra Skawina (University of Warsaw, Poland)
Björn Stelbrink (Museum für Naturkunde Berlin, Germany)
Ellen Strong (Smithsonian National Museum of Natural History, USA)
Kostas Triantis (National \& Kapodistrian University of Athens, Greece)
Quentin Wackenheim (Sorbonne University, Paris, France)
Tim Wollesen (University of Vienna, Austria).

Welcome Remarks by the President of Unitas Malacologica

"Grüß Gott" - our local greeting - to all participants of the World Congress of Malacology 2022, which is the $21^{\text {st }}$ international congress of Unitas Malacologica. We feel honored to host WCM 2022 here at the Biocenter of the Ludwig-Maximilians-University in the southwest of Munich, Bavaria. We are pleased to welcome all delegates, more than 320 participants representing close to 40 countries from all over the globe.

Unitas Malacologica was founded at Sept $21^{\text {st }} 1962$, and thus celebrates its $60^{\text {th }}$ birthday this year. There is little doubt that malacology as a scientific discipline has never been more important than in our time. Mollusca, in particular the freshwater and terrestrial taxa, is the leading phylum concerning the percentages of endangered organisms. Molluscs play a significant role in all kinds of biomonitoring in order to understand the decline of biodiversity due to human activities or because of the climate crisis. More and more molluscs are important sources for various pharmaceuticals, and the famous conotoxins, which generated new classes of anti-pain medicals, are only the tip of a huge iceberg. Understanding the processes of more than half a billion years of evolution of Mollusca requires a combined approach of larvae and adults, of molecules, morphologies, and behaviors, of geno- and phenotypes of the presence and the past. And - last but not least - the world would be much poorer without the delicious taste of various cephalopods, bivalves or snails. Indeed, I can't imagine that anybody is not fascinated by the tremendous diversity or simple beauty of molluscs.

It likely has never been so difficult to organize a WCM: we all suffered from the Corona pandemic, and we all are more than happy that the current situation allows us to come together face to face, to chat during breaks, have discussions during lunches and dinners and along icebreakers or excursions. Needless to say the brutal military attack against Ukraine has also affected the registration and preparation process by some unexpectedly significantly raised costs. But to say it clearly: we strongly condemn the invasion, which has had a devastating impact on the people and infrastructure of Ukraine. We offer our support to our scientific colleagues who have been touched by the conflict and our fellow scientific institutions in the Ukraine. While we denounce the actions of the Russian government, we welcome our Russian colleagues here at the WCM 2022.The motto of WCM 2022 is "Meeting of Generations". We tried hard to make participation manageable and financeable for young scientists and in particular for graduate students. A warm "thank you so much" to all institutions, societies and persons, who supported WCM 2022 in various ways.

This year the conference will honour two outstanding malacologists, Dr. Philippe Bouchet and Dr. Winston F. Ponder, for their extraordinary contributions in the field of molluscan diversity and systematics. Note that both colleagues are curators in museums, thus their legacy will be twofold: all specimens they collected and deposited during decades of scientific activities and their papers: both will be a source of research and will stimulate and educate future malacologists.

I would like to take this opportunity to thank the local organizing committee around Heidi Gensler for their tireless work in preparing WCM 2022, the council and members of Unitas Malacologica for making this important event possible. I am indebted to our university, the Ludwig-MaximiliansUniversität (LMU) München: the Congress Center, the Faculty of Biology, and the GeoBio-Center of LMU all provided help in many respects as did the Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB) with their various institutions, and the Technische Universität München (TUM). I thank all the sponsors and donors, their contributions have made this congress possible indeed. On behalf of the organizing committee, we would like to thank all participants for your attendance. We all hope that WCM 2022 will be a fruitful and stimulating event, and will provide many opportunities to share your knowledge, expertise, and ideas.
Enjoy Munich, "the largest village on earth" (as it is called by the locals), experience the local dishes, sights, and culture. We wish you a wonderful and rewarding time in Bavaria!

Gerhard Haszprunar - President of Unitas Malacologica 2019-2022

Symposia of the WCM 2022

Exploration, Biodiversity and Systematics of Molluscs: A Symposium in Honour of Philippe Bouchet

Organized by
Nicolas Puillandre (Muséum national d'Histoire naturelle Paris, France) Ellen Strong (Smithsonian National Museum of Natural History, USA) Yuri Kantor (Russian Academy of Sciences, Moscow, Russia)

Abstract

Philippe Bouchet, Senior Professor at the Muséum national d'Histoire naturelle in Paris, will retire in August 2022 after a career spanning almost five decades. Since joining the museum in 1973 as an assistant, he has authored more than 210 original refereed research papers and ca. 160 other publications, and has described over 600 new species of molluscs. Through his leadership, the malacological collection of the MNHN has become the most active in the world, with a remarkable annual growth, especially of type specimens. Philippe's primary interests are in the exploration and description of invertebrate diversity, particularly molluscs. His passion for exploring unknown faunas was the impetus for launching "Our Planet Reviewed", an initiative that has become the gold standard for biodiversity surveys. He is a recognized leader in this field and has cultivated an international network of collaborators, both academics and citizen scientists, to valorize these collections. This symposium organized in his honor will bring together scientists not only to celebrate Philippe's career and accomplishments, but also to present new discoveries made possible by MNHN expeditions.

The organizers of this symposium have offered special support to early career researchers through their travel grant and research award scheme.
All contributions to this symposium are identified by the abbreviation EBS.

Mollusc Evolutionary History

Organized by
Alexander Nützel (SNSB - Bavarian State Collection for Palaeontology and Geology, Munich, Germany) Katie Collins (The Natural History Museum, London, United Kingdom) Mariel Ferrari (Instituto Patagónico de Geología y Paleontología, Puerto Madryn, Argentina)

Molluscs are amongst the most diverse animal phyla and are well-represented in the fossil record. The phylogeny of molluscs has been disputed for a long time, based on morphological, palaeontological and molecular analyses. There are several entirely extinct groups of molluscs, such as Bellerophontida, Ammonoidea, Hippuritida, or large parts of Nautilida and Trigoniida, to name only a few, which need to be positioned in the mollusc tree of life. The identification of the earliest representatives of clades is a challenging paleontological task. Palaeontologists continuously discover new faunas and taxa during fieldwork or by screening legacy natural history collections.

This symposium welcomes contributions from both palaeontologists and neontologists on the following fields:

- Fossil molluscs in phylogenies: positioning extinct clades, dating of nodes, and evidence for character evolution.
- Discovery of new fossil taxa (taxonomists welcome!).
- Diversity of molluscs including the impact of mass extinction events.

All contributions to this symposium are identified by the abbreviation MEH.

American Malacological Society President's Symposium: Molluscan Conservation

Organized by

Kenneth A. Hayes (Director of the Pacific Center for Molecular Biodiversity, Bernice Pauahi Bishop Museum, Hawaii, USA)

Abstract

The synergistic impacts of centuries of unchecked habitat destruction, invasive species, and climate change continue to exacerbate extinction rates among all taxonomic groups, bringing ecosystems to a tipping point. As we quickly approach the mid-way point of the $21^{\text {st }}$ century we find ourselves confronting the most serious impacts of biodiversity loss and climate change. Molluscs, found across marine, terrestrial, and freshwater habitats, have suffered substantial losses, with estimated 1032 species extinctions since 1500 - the year International Union for Conservation of Nature uses as the starting point for counting extinctions. Although this is less than 1.4% of the total described number of molluscs (~ 76000), it is probably a dramatic underestimate, with some studies indicating the numbers may be greater than 5000 species. This symposium on Molluscan Conservation will feature speakers from across habitats and molluscan classes providing an updated picture of molluscan biodiversity in the Anthropocene and highlighting the research efforts to understand and mitigate the decline among molluscs.

All contributions to this symposium are identified by the abbreviation AMS.

Continental Molluscs Facing Environmental Changes

Organized by
Quentin Wackenheim, (Sorbonne University, France)
Salomé Granai, (GéoArchPal, GéoArchÉon, France)
Lucie Juřičková (Charles University Prague, Czech Republic)
Ondřej Korábek (Charles University Prague, Czech Republic)

Over the last million years, continental molluscs survived major climate and environmental changes. Palaeomalacological studies provide valuable insight to understand their modern distribution and ecology. Today, anthropogenic activities and the rapid ongoing climate changes influence the diversity and population dynamics of molluscs and their habitats.

This symposium aims to discuss the response of molluscs to these impacts from the past to the present, from the million years to the year, from the biome to the micro-habitat:

- Ecological tolerance to changes in habitat
- Past distribution vs. modern distribution
- Population and species association changes
- Long-term or short-term variations
- The priority effect in malacology

All contributions to this symposium are identified by the abbreviation CON.

Systematics and Evolution of (not only Marine) Heterobranchia

Organized by
Bastian Brenzinger (SNSB-ZSM, Bavarian State Collection of Zoology Munich, Germany), Katharina M. Jörger (SNSB-ZSM, Munich, Germany), Juan Moles (Faculty of Biology, University of Barcelona, Spain), Timea Neusser (LMU Munich, Germany)

Heterobranch snails and slugs contain about half of all extant gastropod species and about one-third of all molluscs. They inhabit aquatic and terrestrial environments all over the world and display a myriad of body shapes and ecological roles with underlying evolutionary processes.
Members include tiny lower heterobranchs, charismatic sea slugs and sea hares, ecologically important pteropods and ubiquitous aquatic and land pulmonates, among others. Traditional classifications have changed dramatically and heterobranch evolution is continuously better-understood thanks to more comprehensive, balanced datasets, and thorough analyses.

Here we invite contributions on any aspects of systematics, evolution and biology of heterobranchs, encouraging broader and more integrative visions across traditional opisthobranch and pulmonate borders, bringing researchers from different taxa, environments and methodologies together.

All contributions to this symposium are identified by the abbreviation HET.

The Ecology of Fossil and Extant Molluscs

Organized by
Simon Schneider (CASP, Cambridge, United Kingdom), Andrzej Kaim (Polish Academy of Sciences, Warsaw, Poland), Thomas Neubauer (Justus Liebig University Giessen, Germany)

Molluscs have developed a wide range of environmental adaptations, and some of them take an active role as ecosystem engineers. The functional morphology and biomineralisation of mollusc shells record information on their environment. In addition, molluscs have acquired advanced behavioral traits, related to feeding, predation and propagation.

This symposium welcomes presentations on all aspects of the autecology and synecology of fossil and modern molluscs, including:

- Life-life interactions of molluscs, such as parasitism, commensalism, predator-prey or epibiontsubstrate relationships.
- The impact of molluscs on their environment, including vegetation, water quality, food chains or community structure.
- Molluscs as (sclerochronological) archives of climate, pollution or other environmental parameters.
- Mollusc-dominated and chemosymbiotic communities, their ecology and evolution, and their environmental significance.

All contributions to this symposium are identified by the abbreviation ECO.

Molluscs as Parasites and Victims of Parasitism: Biodiversity, Ecology, and Evolution

Organized by
Kenneth De Baets (GeoZentrum Nordbayern, Erlangen, Germany), Aleksandra Skawina (University of Warsaw, Poland)

Up to half of all animals have been estimated to have a parasitic lifestyle, yet the number of transitions to parasitism and their potential for species diversification and evolution remain largely unresolved. Mollusks are diverse both as parasites and host for parasites. They offer a unique perspective to better understand the impact of parasite-host interactions on the biodiversity, ecology and evolution of both parasites and victims. The symposium brings together researchers working on the co-evolution of mollusks and their parasites or hosts in the broadest sense ranging from the modulation of mollusk immune responses, diversity and distribution in relationship with their parasites as well as the impact of parasitic mollusks on the ecology and evolution of their hosts.
All contributions to this symposium are identified by the abbreviation PAR.

Volunteers in Malacology

Organized by
Anna Holmes (National Museum Wales, Cardiff United Kingdom), Ben Rowson (National Museum of Wales, Cardiff, United Kingdom)

Malacological research has always depended on the contributions of unpaid volunteers. Whether such people are called amateurs, enthusiasts, citizen scientists, collectors, data-miners or indeed aspiring professionals, the work of volunteers past and present remains integral to malacology today. Assistance from local communities is often vital to monitoring or recording projects that require many eyes on the ground. Online technologies using image-sharing have revolutionized identification and data collection, and broadened participation. Volunteering at institutes like museums remains a mutually rewarding activity. In some settings, publicly-funded research funding is increasingly tied to community outreach and engagement. Knowing one's audience and how to engage them is as important as an understanding of the limits of volunteer work. Learning from those who have experienced and learned from this practice is invaluable.

This symposium welcomes presentations on any aspect of malacological research involving the contributions of volunteers.

All contributions to this symposium are identified by the abbreviation VOL.

The EvoDevo Corner

Organized by
Tim Wollesen (University of Vienna, Austria)

Mollusks are one of the most speciose metazoan clades exhibiting a stunning diversity of extant and fossil adult body plans. In addition, various modes of direct and indirect development are known with a plethora of fascinating larval types.
In this evolutionary developmental symposium current contributions on molluscan developmental stages and adults will be discussed and approaches comparing their body plans to those of other spiralians or bilaterians are appreciated. Classical EvoDevo topics such as genotype-phenotype relation or life cycle evolution are welcome. Besides morphological and molecular studies, this symposium will also cover paleontological, proteomic, or ethological studies.

All contributions to this symposium are identified by the abbreviation EVO.

Insular Ecosystems as Cradles of Mollusc Biodiversity and Evolution

Organized by
Björn Stelbrink (Museum für Naturkunde Berlin, Germany) Kostas Triantis (National \& Kapodistrian University of Athens, Greece)
Christian Albrecht (Justus Liebig University Giessen, Germany)

In this symposium, we want to bring together malacologists that are interested in both extant and extinct faunas of insular ecosystems. This may not only include true islands and archipelagos but also crater and long-lived lakes, mountain tops ("islands in the sky"), caves and others. We invite contributions from a broad spectrum of topics including biodiversity and conservation, shell morphology and evolution, invasive species as well as phylogenetic and biogeographical reconstructions.

All contributions to this symposium are identified by the abbreviation INS.

Posters

Background

The Prince Gustav Channel, located at the tip of the Eastern Antarctic Peninsula, has undergone dramatic changes in ice-cover and environmental conditions over the past 200 years.

The Prince Gustav Ice Shelf collapsed in 1995. Until 2018 no benthic biological sampling of the marine benthos, including molluses, of this area had occurred.

Methods

Samples were collected with an epibenthic sledge, fixed in 96% ethanol and identified to species level.

Macrobenthic molluscan biodiversity of the Prince Gustav Channel was assessed with uni- and multivariate methods, including species richness, abundance and diversity indices.

Bivalve assemblages were compared with Weddell Gyre data

Results \& Discussion

1. The Prince Gustav Channel molluscan assemblage is distinct and species poor. It comprises gastropods (24 spp), bivalves (18 spp), scaphopods (2 spp) and solenogastres (6 spp).
2. Some of these species occur in high abundances. Scaphopods make up 0.9-8\% abundance in published Southern Ocean assemblages, while in the Prince Gustav Channel they make up 72% of the overall abundance.

The Prince Gustav Channel is geographically isolated from the Weddell Gyre and the dominant species show planktonic dispersal strategies, with direct developing species being rare.

The Prince Gustav Channel is recolonising after the recent changes in ice cover. (Anderson et al., 2021, Frontiers in Marine Science)

Southern Ocean Molluscs \& Climate Change

Madeline P. B. C. Anderson*, Huw J. Griffiths, Katrin Linse区 *mason@bas.ac.uk yr @DiverMads

Background

Methane is a climate change gas more potent than carbon dioxide. Southern Ocean marine methane is estimated to comprise $1 / 4 \mathrm{global}$ marine methane. Increased marine methane seepage may be caused by warming of the Antarctic continental shelf waters.

Marine methane in the Southern Ocean could play an important role in 1) climate change and 2) impact benthic biodiversity and ecosystem function.

Methods \& Preliminary Results

Macrobenthic fauna was collected on the continental shelf around South Georgia by multicorer. 26 tubes from 14 sites were fixed in 96% ethanol.

Fauna was identified to morphospecies for the macrobenthic diversity assessment.

Of the total 3000 individuals collected, 180 were molluscs. 2 mollusc classes were present: gastropods ($n=8,6 \mathrm{spp}$) and bivalves ($n=172,6 \mathrm{spp}$).

Next Steps - for my PhD

1. Use of environmental parameters for macrobenthic community pattern assessments and their drivers.
2. Investigation of the community composition, functional traits and trophodynamics of benthic fauna, including molluscan communities, from hydrocarbon and carbon enriched habitats in the Southern Ocean which are known or hypothesised to be influenced by methane seeps.
3. Analysis of the role of bivalves as potential indicator species for hydrocarbon and carbon enriched habitats in the Southern Ocean, leading to identification of potential further hydrocarbon enriched sites. Bivalves will be analysed for isotope composition of soft parts and shells.

Looks don't matter in Brotia - Phylogeny and molecular genetics of freshwater gastropods from the Kaek River in Thailand using mtDNA and ddRAD

Simon Bober ${ }^{1}$, Nora Lentge-Maaß ${ }^{2}$, Marco T. Neiber ${ }^{1}$, Matthias Glaubrecht ${ }^{1}$
'Department Biodiversity of Animals, Universität Hamburg, and Leibniz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
${ }^{2}$ Museum of Natural History, Leibniz Institute of Evolution and Biodiversity, Berlin, Germany

Abstract

Introduction Species of Brotia are typically found in tropical forest rivers and mountain streams of Southeast -Asia, from India to Borneo. In the middle of the last century, Brandt (1968,1974) described ten Brotia morphospecies (including subspecies) from an approximately 100 km long part of the Kaek River. This is unique since previous studies suggest that Brotia appears to occur in predictable combinations along rivers with usually one more globular and one more turreted shell form (Davis 1982, Köhler et al., 2010). It is the aim of this study to investigate the genetical diversity of Brotia species along the Kaek River in concert with specimens from adjacent river systems. Assuming a relatively young species flock with potentially little variation within common marker genes, additionally the whole genome was sampled using ddRAD sequencing. The herein presented results are only a fraction of a larger project and solely focusing on the genetics part of this comprehensive study.

No overlap between morphological and genetical data
The genomic sampling failed to recover entities described as species in the literature. Morphospecies were found spread across the tree for mtDNA (16S, COI) and ddRAD loci. (For visual reasons only the ddRAD

None of the formally decribed species was found to be monophyletic As an example B. microsculpta, a panriverine morphospecies was highlighted here to show the almost random appearance of morphospecies across the tree, giving no overlap between morphological and genetical characters.

Geographical structure suggests two distinct clusters within the lower and upper reaches

A geographical structure was found within mtDNA and ddRAD loci, which divides the upper reaches from the lower reaches. A zone of admixture is found where the upper reaches meet the lower reaches (K10, K46, K48), which genetically neither belongs to the upper nor exactly to the lower reaches.

Morphological differences support the hypothesized clusters

The two clusters per river reach were found to be significantly different in shell size and shape, suggesting the postulated occurrence of globular and turreted Brotia species within the Kaek River. Athough statistically detectable, hard to identify by eye due to a high degree of apparent phenotypic plasticity.

[^0]simon.bober@uni-hamburg.de

A highly diverse, turritelline-dominated micro-molluscan assemblage from the early Miocene (Burdigalian) of the Dwarka Basin, western India

Kanishka Bose ${ }^{1}$, Shiladri Sekhar Das ${ }^{1}$, Subhronil Mondal ${ }^{2}$
${ }^{1}$ Geological Studies Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, India.
${ }^{2}$ Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India.

Background and Objectives:

Turritelline dominated assemblages (TDA) are globally very common in both siliciclastic and carbonate sedimentary successions through ages (see Allmon and Knight, 1993).
Only a handful of research works exists on the Miocene TDAs of the Kutch Basin, western India (see Halder and Singha, 2016 and Goswam et al., 2020). Jain (2014) first mentioned the occurrence of a 'turritella' bed from the adjacent Dwarka Basin, western India although did not carry out any detailed study on it. Herein, an extensive spatial collection is done on this particular bed to reveal its true diversity picture of the macro as well as micro gastropods and bivalves. Miocene marine sequences are terra-incognita for the micro-molluscan faunas and only two notable works are present on sea-grass associated micro molluscs assemblages of the early Miocene (Burdigalian) of Quilon, southern India (Harzhauser, 2014) and Banyunganti, southcentral Java, Indonesia (Reich et al., 2014). In the present endeavour we report a considerable number of early Miocene (Burdigalian) micro-molluses found from a TDA in the Dwarka Basin, western India.

Materials and Methods:

Collection of the specimens: The gastropod and bivalve specimens collected from three different fossil bearing localities (Loc. 1, 2 and, 3) of the TDA (Nmb) Unit of the Gaj Formation of the Dwarka Basin. Taxonomic Diversity Analysis: Pie charts and bar plots are used at family, genus and species level. The adequacy of the specimens and species richness are obtained using rarefied curves.
Ecological Diversity Analysis: Pie charts are used based on their diet. The gastropod diets are: Predatory carnivores (CP); Browsing carnivores (CB); Omnivores-grazers (HO); Herbivore-grazers (HG); Suspension feeders (SU); Scavenger-predators (SP).
The hivalve life habits diets: Micro-carnivores (MC); Deposit feeders The bivalve iife habits diets: Micro-carnivores (MC); Deposit
(DF); Suspension feeders (SU); Chemo symbiotic feeders (C) Comparison of the molluscan faunal composition of our TDA is done with a seagrass associated micro and macro molluscan fauna of another contemporary basin of Indian subcontinent i.e., Quilon Basin, southern India based on Simpson's Similarity Index.

Results:

The turritelline gastropods (Family Turritellidae) show exceptionally high abundance ($\mathrm{N}=7 \mathbf{7 0 6 2}$) (constituting $\sim 96 \%$ of the all gastropods) and hence named turritelline-dominated assemblage (TDA) unit and are represented by eight species belonging to four genera, i.e., Zaria, Haustator, Turritella, and Protoma.
The associated gastropods show high species richness of 49 species ($\mathbf{N}=\mathbf{2 7 1}$) belonging to 41 genera with relatively high abundance of families like Nassariidae, Rissoinidae, Potamididae, Pyramillidae, and Scaliolidae.
The associated bivalves are represented by $\mathbf{2 5}$ species ($\mathrm{N}=\mathbf{8 5 3 \text {) }}$ belonging to 15 genera with high abundance of families like Corbulidae, Veneridae, Nuculanidae, and Ostreidae
Ecologically, the dominating feeding habit of the molluscan fauna of the TDA unit is suspension feeders for both gastropods (-96.22%) and bivalves $(\mathbf{8 9 . 7 9 \%}$). Apart from that, herbivore-grazers ($\mathbf{1 . 6 1 \%}$),
 the gastropods, whereas, deposit-feeders (9.61%) and chemosymbionts ($\mathbf{0 . 5 0 \%}$) constitute the types of bivalve feeding population.
Faunistic correlation of this TDA unit of the Dwarka Basin with a seagrass-associated micro-gastropod assemblage of the Quilon Basin (southern India) reveals $\mathbf{5 7 . 7 7 \%}$ similarity for gastropods and $\mathbf{3 3 . 3 3 \%}$ (southern India) reveals
similarity for bivalves.

Inferences and Conclusion:

Extensive flourishment of turritelline gastropods along with other suspension feeding bivalves suggests a nutrient rich environment, often caused due to ocean upwelling (see Allmon and Knight, 1993; Allmon, 2007)
Knight, 1993; Allmon, 2007).
Although significantly less in abundance, high faunistic similarity between TDA and seagras associated molluscan fauna explains the occurrence of the other opportunist molluses with different diets dwelling in nutrient rich waters alike seagrass habitats.

```
References: A.D. And Knight, J.L., 1993. Palocecological significance of a turritelline gastropod-dominated assemblage in the Cretaceous of South
Carolin. Journalof Palcontology, 67(3), pp. 355-360.
Almon, W.D., 2007. Cretaceous marine nutrients, greenhouse carbonates, and the abundance of turritelline gastropods. The Journal of Geolog, 115,
```



```
-India: spatiotemporal implications. Historical Biology, 33(9), pp. 1504-1521.
-Hoia.spatiotempora implications.Historical Biology, 03(9),pp.1.1504-152
Jain, R. L., 2014, Neogenc fossils from Kathiawar, Gujara, India with special emphasis on taxonomic description of Molluses and corals:
PPalcontologica Indica, New Series, v. 55,470 p.
- Reich, S., Wesselingh, F. .and Renemm, ., 2014.A highly diverse molluscan seagrass fauna from the caly, Burdigalian (early Miocene) of Bany 
Paläontologic, Anthropologic und Prahistoric, p.5-129.
``` Nmc and Nmd units.

Geological Setting and Stratigraphy:
The Dwarka Basin, situated at the western fringe of the Kathiawar Peninsula, is a peri-cratonic shelf basin and filled with an extensive succession of the Neogene marine sediments (Jain, 2014).
The succession is subdivided into three formations, namely the Gaj, Dwarka, and Miliolite Limestone formations in ascending stratigraphic order ranging from the early Miocene (Burdigalian) to Holocene and overlying unconformably on the Deccan Traps and laterite (Jain, 2014)
The basal Nandana Member of the Gaj Formation is a \(\sim 10 \mathrm{~m}\) thick and is further subdivided into four units: Nma, Nmb
The Nmb (TDA) Unit is characterized by a highly fossiliferous brown shale hosting a near consistent turritelline dominated assemblage along with bivalves, echinoids, crabs and fish teeth.

Nub Unit: Bivalve Family-
level diverity

THE COMPLEX DIVERSITY OF THE CARNIVOROUS GASTROPOD CALLIOSTOMA (GASTROPODA, CALLIOSTOMATIDAE) IN THE MEDITERRANEAN SEA
Gıacomo Chrappat, Gulia Fassio!, Carlo Smingio, Paolo Manotini, Maria Vitiona Modicat, Marco Oiveno

BACKGROUNO

 chant wen finimint+iverertin

\section*{RESULTS}

Chant 4tr.0.0. +

 A+e"tale
 wern

\section*{DISCUSSION: A TREND OF DIVERSIFICATION}
\begin{tabular}{|c|c|c|c|c|}
\hline 5x-2\% & H2mere & Tataner & & \\
\hline + & \multirow[t]{3}{*}{} & Exatine & - 7 \%** & - \\
\hline \multirow[b]{3}{*}{} & & & - 71 - & - \\
\hline & & Patat & tix & \(\underline{4}\) \\
\hline & \[
y=t a r e
\] & & [8984 & \(\square\) \\
\hline
\end{tabular}

\section*{CONCLUSIONS AND FUTURE DIRECTIONS}

CO: + \(68+1\) TE2 BAYESUNN INFERENME ANALYSIS

\section*{Revisiting species of the genera Subulina and Striosubulina (Gastropoda, Achatinidae): Anatomical characterization brings new operational criteria for species delimitation Sthefane D'ávila}

Museu de Malacologia Prof. Maury Pinto de Oliveira - MMPMPO, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil. Email: sthefanedavila@hotmail.com

Land snail's species formerly ascribed to the family subulinidae, now recognized as synonym of Achatinidae, constitute a anatomy of the soft parts, life history, distribution, and conservation status. Except for a few species that were introduced in non-native areas and are recognized as invasive, most of the species seems to have rather restricted distributions or even to be endemic, confined to some ecoregions and oceanic Islands. The scarcity of taxonomic revisions and the lack of of interest in this group. The classification systems proposed for the assembly of genera previously recognized as Stenogyrinae, in the beginning of the 19th century and later as Subulinidae, in the 1950s, is entirely based on shell traits and remain nowadays as the main guideline for taxonomists. "Subulinid" shells, however, are relatively plain and uninformative. Besides, plasticity in shell shape has been documented for some genera. Thus, the anatomy of the soft parts, although unknown for most of the representatives of this group, appears as a promising way to solve inconsistencies

Herein, most of the specimens analyzed belong to the malacological collection of the Museum National d'Histoire Naturelle de Paris. Five species were collected in Comoro Islands in the context of the "Inventaire National du Patrimoine
Naturelle". Anatomical descriptions for eight species are provided, ie.: Striosubulina striatela from Ivory Coast, Subulina ferriezi, Subulina simplex, Subulina cereola, Subulina canonica, and Subulina normalis from Comoro Islands, Subulina angustior from Cameroon, and Subulina parana from Brazil. The anatomy of the soft parts of all the species was compared with S. octona, type species of this genus, providing insights on the diagnostic criteria for both genera Subuina and
Striosubulina. Species characterization was exple systems which were wanting in their original descriptions. Accordingly, the number of operational criteria for species distinction was increased.
Acknowledgements. To Philippe Maestrati and Barbara Buge for all the assistance during the analysis of specimens in the MNHN, Paris, France. PM also provided the images of the shells.

\({ }^{3}\) 3) (3) detail of the suture. (4) Dorsal face of
pallial organs. (6-8) reproductive system.

Subulina cereola (Morelet, 1860). Original label: "Mayotte, Presq' ile de Boueni Boungoudranavi, forêt naturelle au pied de falaise alt. 180 m Réc. P. Bouchet \& A. Abdou, \(3 \mathrm{Mar} 2001 "\) ". (63, 64). Shell, 23.7 mm and 20.2 mm . (65) Soft parts. (66) mantle and pallial organs. (67) Detail of t
Reproductive system.

Striosubulina striatella (Rang, 1831). Original label: "Stenogyra; Cote d"voire; M. Ehoié 1901". (9,
parts. (14) Pallial organs. (15, 16) Detail of kidney, heart, and ureter. (17-27) Reproductive system.

Subulina simplex (Morelet, 1882). Original label: "Mayotte, massif de Sondai Chounoui sur Eboulisi, dans forêt sèche alt. \(80-150 \mathrm{~m}, 24\) Mar 2001". (28) Shell, 8 mm . \((29,30)\) Shell showing detail of the columella. (31) Soft parts partially dissected. (32, 33) Snail with everted phallus. (34) Everted phallus in detail. (35-42)
Reproductive system. (43) Pallial organs. (44) position of the eggs seen through the transparent shell.
 1906, Para, Brasil (available from http ://clade.ansp.org/malacology/collections/d
and details of shell aperture. (\(\mathbf{5 0 , 5 1}\)) Juvenile shell. (52- \(\mathbf{6 2}\)) Reproductive system.

 Patsé, Forêt de la Tha lueg, Alt. \(70-150 \mathrm{~m}\)., 25 Mar 2001". (75) Shell, 17.2 mm . (76, 77) Shell. (78) Protoconch. (79-81) Soft parts. (82) Everted phallus showing the

Subulina ferriezi (Morelet, 1882). Original label: "Subulina ferriezi, Mayotte, Hachirangou, forêt secondaire, bois humide avec mousses. Alt. 200m". (83, 84).
Shells, 18.2 mm and 16.5 mm . (85) Cephalopodal mass and everted phallus. (86, 87) Shelis, 18.2 mm and 16.5 mm . \((85\)) Cephalopodal mass and everted phalius. (86, 87)
Cephalopodal mass and soft parts seen trough the transparent shell. (\(88-90\))
Reproductive system.
 Subulina octona (Bruguière, 1789). Original label: "MZUSP 92655, Le
Brasil, Boqueirão (Terrenos Morros), col. LR Simone, det. LR Simone",

\title{
A remarkable outcome of Natura 2000 prospections initiated by P. Bouchet: A new subspecies of the Istrian-Dinaridic clausiliid Cochlodina triloba (O. Boettger 1877) in France
}

Gerhard Falkner \& Margrit Falkner \({ }^{1}\)
France
Montagne de Lure
\({ }^{1}\) Staatlib es Mue um für Naturk nde Stuttgart, Roe ns ein 1, DE-70191 Stuttgart (Germany Email: falh er.ehrenamt@日n ns bw.de

\section*{Abstract:}

In \#ौe hame of the very successful malacological prospections of the Muséum national d'Histoire naturelle Paris (MNHN) for the Eurpean network of nature protection areas "Natur Jocio" - in cobsuboration with the Office National des Forêts (ONF) - field work in the Montagne de Lure, Département Alpes-de-Haute-Provence, has been carried out in June 2002. In mie jarrt of the calcareous French Prealps as main biotopes for rich snail faunas have proven pristine montane forests dominated by old beeches and silver firs in rather steep slopes reache-s to the upper tree line. Cochlodina triloba lives there in moist ravines on decaying deadwood, sometimes even xylobiontic. The distance of the newly detected occurrences of Cochlodina triloba to the hitherto known area of the species is about 650 kms . Cochlodina triloba is not the first clausiliid species in the French fauna with a considerable east-west disjunction. As further examples can be named Cochlodina comensis (L. Pfeiffer 1850), Ruthenica filograna (Rossmässler 1836), and the recently detected Fusulus interruptus (C. Pfeiffer 1828). To explain the existence of these isolated populations the most probable hypothesis is to consider them as relicts of an extension of the distribution areas within the Middle Pleistocene during the Holsteinian (Great) Interglacial. A close examination and comparison with material from Istria has proven, that the French occurrences of Cochlodina triloba represent a new and undescribed subspecies. The main characters of this new subspecies from the Montagne de Lure are the following: Shell generally more obese and compact than in the typical form from Istria; less glossy. Aperture more square-cut and parietal callus stronger. Pricipalis only a little bit or not protracting over the upper palatal fold. The clausilium shows the most important characters: Inner lobe markedly reduced and the bight between this and the digitiform middle lobe more shallow; the outer lobe broadly rounded while it is in the typical form narrower and bulbous. In the final publication the new subspecies will be named in honour of Philippe Bouchet.

Fig. 1: Finding sites (\(\Delta\)) of Chochlodina triloba

 sites. (B) A special feature of the Montagne de Lure are near-natural beech forests, which are party intermixed with extensive stands of silver
fir. These primary forests, which are not or only extensivily manaeged, are rich in deadwood and harbour the biotopes of Cochlodina triloba in shady areas, which extend into the high-alititude combat zone of the beech trees. The biotpes of the Montagne de Lure are antly described

 biotopes in permanently moist environments and even found transitions to a purely xylobiont way of life.

- Cochlodina trioba trioba, Slovenia, Corgnale \((=\) Lokev),
 - Cochlodina trioban. ssp. Alpes-do-Haute-Provence, Montagne de Lure, Combe de la Sapee, 1480 m NN: leg,
G. u. M. Fakner. O. Gargominy B. Fontaine \& M Klein G. u. M. Fakker, O. Gargominy, B. Fontaine \& M. Klein
12.06.2002 (MNHN): intended holotype of a new 12.06 .2002 (MNHN); intended holotype of a new
subspecies to be described; with dorsal view. 3-4- Cochlodina trilobat triloba, Slovenia, Lokev near Sezzana,
leg. H. Nordsieck 11.08 .1968 (SMNS-Nords 04235) Cochlodina triloba triloba (large form) C Cratia, Buzet: leg H. Nordsieck 15.04.1969 (SMNS-Nords 02888) - Cochlodina trioba ? ssp. (dwarf form) Brsě̌, Mosccenicica D.
Nords 02888).
-. - Cochlodina trilioba n. ssp., Alpes-de-Haute-Provence, Montagne de Lure, Combe de la Sapee, \(1480 \mathrm{~m} \mathrm{NN} ;\) leg, G. u. M. Falker. O. Gargominy, B. Fontaine \& M. Klein
12.06.2002 (MNHN) 12.06.2002 (MNHN)
- Cochlodina tritioba n. spp..Apes-de-Haute-Provence,
Montagne de Lure, Col du Pas de la Griille, 1600 m NN ; leg. G. . . M. Falker, O. Gargominy, B. Fontaine \& \(M\). Klein
10. 10.06.2002 (MNHN)

Characteristics of the new subspecies: -C. triloba from the Montagne de Lure is generally Itrere obese and Iompact than the typical
Itria and Slovenia. It is also less glossy.

The red dots in the eastern area of \(C\). triloba indicate the occurences of a remarkable dwarf form (3 series in
collection). Subspecies of Cochlodina comensis (distribution according to Giusti \& Mazzini 1971): 1 C . comensis (\(L\). collection). Subspecies of Cochlodina comensis (distribution according to Giusti \& Mazzini 1971):
Pfeiffer 1850), 2 C. trilamellata (A. Schmidt 1868), only loc. typ., 3 C. lucensis (Gentiluomo 1868). Pfeiffer 1850), 2 C. trilamellata (A. Schmidt 1868), only loc. typ., 3 C. I Iucensis (Gentiluomo 1868).
Cochlodina comensis: was discovered by B. Rensch near Digne (Jaeckel sen. 1963); next locality

Fig. 4: Features of the Clausilium

- The apertural edges are more strongly connected and the aperture as a whole is more angular. The angle of the aperture is more distinctly raised - Palatal folds: the principalis is not or only slightly extended above the upper palatal fold.
- Important features are found on the clausilium (Fig. 4).

\section*{Discussion:}

Between 2000 and 2002 Philippe Bouchet has initiated and organised the funding for several missions of malacological prospection of the Muséum national d"Histoire naturelle Paris (MNHN) for the Eurpean network of nature protection areas "Natura 2000 " in the region Provence-Alps-French
Riviera (overview in Gargominy 2002). In the frame of these very successful missions field work in the Montagne de Lure has been carried out in June 2002. Among many nice findings there was the detection of a new clausiliid for the French fauna. The largely isolated occurrence of the Istrian-Dinaridic Cochlodina triloba is not only new for France but represents also an undescribed subspecies.
The distance of the newly detected occurrences of Cochlodina triloba to the hitherto known area of the species is about 650 kms . Cochlodina triloba is not the first clausilid species in the French fauna with a considerable east-west disjunction. As further exemples can be named Cochlodina comensis (L. Preiffer 1850) (Jaeck ser. 1903. 79), Ruhnenica filograna (Rossmassler 1836) (Gitenberger 1978. 112-114), and the recently detected Fusulus interruptus (C. Pfeiffer 1828) (Combrisson 2020).
To explain the existence of these isolated populations the most probable hypothesis is to consider them as relicts of an extension of the distribution
areas within the Middle Pleistocene during the Holsteinian (Great) Interglacial.

\footnotetext{
- Boetiger, O. (1877): Clausilienstudien. - Palasontographica, (N. F.) Suppl. 3 (677): Tit +122 pp., 4 Tat. Cassel. E Novitiates Conchologicae, Suppl. VI)

}
ae al lappuid dune thérie autour de lisolation gesographique - les Nunataks. - MalaCo, 16:1-5. Parts.

Litthabitellidae: a new family of the Truncatelloidea (Caenogastropoda)
Andrzej Fatniowshi, Aleksandra Jagrezynska, Artur Usikowiki, Sebastian Holiman

\title{
The conservation of the freshwater hydrobiid spring snails versus scarcity and water needs of local populations
}

Mohamed Ghamizi, Khadija Boulaassafer, Abderrazak Boudellah and Sanae El Ghali

Muséum d'Histoire Naturelle de Marrakech, Département de Biologie, Laboratoire EauBiodiCC, Faculté des. Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco.

\section*{Abstract}

Wells and springs are the main sources of drinking water for people living in semi-arid areas where water scarcity is accentuated. Recent studies carried out on freshwater springs and wells in Morocco have revealed the presence of molluses adapted to these habitats. The family Hydrobiidae (Mollusca: Gastropoda) show significant radiation and are often endemic and highly localized. The problem of the conservation of these species and their habitats comes up against the high degree of the unawareness of the local populations about the importance of this heritage biodiversity. So, what are the approaches to raising awareness of the concept of conservation among the locals whilst respecting the increasing need for water either for domestic or agricultural use? We provide examples based on the results of two Critical Ecosystem Partnership Fund projects in Morocco on the aquatic biodiversity of Sehb EI Masjoune and the Laabid River. The endemic species collected in these two sites from springs and wells were presented during workshops for local residents by explaining their restricted distribution and their high endemism. The correlation between the presence of these species and water quality is explained, emphasizing their value as bioindicators and their heritage value. The wells were protected and covered against pollution and runoff. The springs are rehabilitated and restored to protect these species and attract visitors interested in sustainable ecotourism. These minute molluscs are hence included in the management and development plans of these sites. The data is updated for four species considered as triggers for two key biodiversity areas and two other species are new, one of which is dedicated to the supporting donor (Giustia cepfi \(\mathbf{n}\). sp.). The work on these tiny molluscs began with the support and supervision of Philippe Bouchet at the National Museum of Natural History of Paris where the types are kept. It is in his honour that we present this work.

ts of interest / Proposal

How to combine the conservation of underground micromolluscs (as photo 1) living in wells (photo 2) or in springs (photo 3) while preserving the water needs of local populations? In the presence of those concerned, we introduced a pedagogy to raise awareness of the importance of these specie as bioindicators of water quality and as a natura as bioindicators of water quality and as a natural international scale.
Convincing users for the conservation of species involves offering them alternative solutions to use and to preserve water quality:
or wells: use well covers and install well protection copings
or sources: set up domestic washhouses outside the spring while improving the good working conditions of the women most concerned by outdoor washing

\section*{Methodology}

Sampling is carried out in the wells using the phreatobiological net and the sediment from the springs is cleaned in nets to collect the micromolluscs. Local populations often attend our investigations. We explain to them the objectives of our work and the interest of studying this underground biodiversity. Socio-economic surveys reveal the importance of water for populations, especially in arid environments, such as the case of the site of Sehb El Masjoune, province of Rehamna. Field missions within the framework of CEPF-funded projects have made it possible to collect new stygobiont and endemic freshwater species.

New Hydrobiid species being analyzed and described: the generic level is provisionally assigned to the genus Giustia The species of CEPF 111540 / AESVT is dedicated to Pr. Touargui of AESVT who has just passed away after our mission in the field (Giustia touarguii \(\mathrm{n} . \mathrm{sp}\).)
The CEPF species 110217 / RESING is dedicated to the type locality (source Tamda Bzou): Giustia bzouensis n.sp.
The species of CEPF 110212 / CDRT is dedicated to the project funder (CEPF): Giustia cepfi n .sp.
 the micromollusss.

PhD students engaged for the study of subterranean freshwater biodiversity under the interested observation of local residents. Phreatobiological net used for the collection of species from wells and aquifer analyzed by the piezometric probe

These species are considered as triggers of the KBA (Key Biodiversity These species are considered as triggers of the KBA (Key Biodiversity
Area) of Sehb EI Masjoune (A: Giustia saidai and B: Giustia costulata) Area) of Sehb EI Masjoune (A: Giustia saidai and B: Giustia costulata)
on which the CEPF ecosystem profile was based to launch aquatic on which the CEPF ecosystem profile was based to launch aquatic species are deposited at the MNHN of Paris

\section*{Conclusion:}

\section*{Results:}

The users of the wells have accepted the actions of protection of the wells to preserve the quality of groundwater and the conservation of endemic species (case of Hydrobiid snails) by associating the objective of protecting children and livestock who risk falling into unprotected wells (see the example of a well next to a school presenting a risk for children, photo A).

The visiting CEPF leadership team (photo B) endorsing this action also convinced local people of the international importance of the conservation of these endemic freshwater species.

The researcher who studies endemic aquatic species, often threatened because of their limited location, must involve local populations in his investigations. It is necessary and advantageous to explain to them the interest of these aquatic species on a scientific, heritage and utility level as bioindicators of water quality. Water scarcity combined with habitat degradation and pollution are threats both to the domestic water needs of local populations and to the endemic species living in these groundwaters.

\section*{The Pomatiidae of the Central Canary Islands just conchological variability or misjudged biodiversity?}

\author{
Klaus Groh \({ }^{1}\) \& Marco T. Neiber \({ }^{2}\)
}

\section*{I Introduction}

The family Pomatiidae (Gastropoda: Littorinimorpha) is represented in
the Canary Islands on each of the major islands by endemic representa the Canary Islands on each of the major islands by endemic representasometimes genus Pomatias Studer, 1798. The Canarian species ane ratenko, 1991, which is subgenus Canaripoma Starobogatov \& Annlyses (Lehmann, 2022). Till 2001, only two Pomatias species were ac cepted for the Canary Islands (lbánez et al., 2001; Starobogatov \& Anis tratenko, 1991), the smooth \(P\). canariensis (\(=\) Cyclostoma laevigatum Webb \& Berthelot, 1833) (Fig. 1) and the ribbed P. adjunctus (Mousson 1872). Baret aly (2002) accepted ther ader ing members of the genus from several islands despite the fact that \(P\) Poing members of the genus from several islands despite the fact that Po preted and consequently several 'new records' were reported.
According to But (2002), the Central Canary Islands and Gran Canaria - are home to three out of five currently -Tccerife species known from the archipelago, namely P. Iaevigatus, P. canariensis (d'Orbigny, 1840) and P. raricosta (Wollaston, 1878), but additional taxa have been proposed. Since there is considerable uncertainty as to the actual number of valid taxa in Tenerife and Gran Canaria, we reviewed the available material from major museum and private collections with the aim to revise the species-group systematics of Pomatias in these islands.

\section*{Material and methods}

We investigated, aside from the material in the authors' collections, ma terial, especially type material, in the following museum collections: Museum, Hamburg Germany (ZMH) Natural History Museum, Santa Museum, Hamburg, Germany (Z MH), Natural history Museum, Santa (NHMUK), National Museum Wales, Cardiff, UK (NMW), Zoological Museum, Zurich Switzerland (ZMZ), Academy of Natural Sciences, Philadelphia, USA (ANSP)
Standard shell measurements (shell height, shell width, height of body whorl, aperture height, aperture width) were taken with a digital calliper. Additionally, the number of spiral ribs, if present, were counted on the body whorl.

 nerife, Te.ina, Quaternary, C.P. a adjunctus, KG, Tenerife, San Andrés, Playa de las Teresitas D.P. P. raricosta, KG, Tenerife, Costa El Draguillo near Taganana. E. P. raricosta, TTMCM, Tenerife, Anaga Mountains. F. Syy
 Tenerife (doubtrul, see Wollaston, 1878). K.P. .adjunctus, TFMCM, Gran Canaria, Llanos de Botija. L. Pomatious sp. 1, KG, Gran Canaria, Barranco de Azuaje W Firgas M. Pomatiassp. 1, TFMCM, Gran Canaria, Barranc de Azuaje W Firgas. N. Pomatias sp. 1, TFMCM, Gran Canaria, Barranco de Apacador. O. Pomatias sp. 2, KG, Gran Canaria, Barranco Hondo. P. Pomatias sp. 2, KG, Gran Canaria, Puerto de las Nieves. Q. Pomatios

\section*{I Results}

The study of type material housed in the collections of several museums in Europe and North America, as well as the examination of more than 100 documented series of Pomatias from both islands in the private collections of the auhors and the museums of Santa Cruz de Tenerife, Frankfurt/Main and Hamburg Gran Cangests that we have to deal wore than three species in Tenerife and the study Type material of Cyclostomus adjunctus Mousson, 1872 (Figs 21 4C D) Cyclostoma laevigatum Webb \& Berthelot, 1833 (Figs 2H, 4A), C canariense d'Orbigny, 1840 (Fig. 2 H , see also Fig. 4B) C canariense var. v inaequalis Wollaston 1878 (Fig. 2F) and C. canariense var. praecursor Boettger, 1908 (Fig. 2A) is documented and lectotypes, if necessary, will be selected. No type material of \(C\) canariense var. \(\beta\) raricosta Wollaston, 1878 could be found, consequently a neotype ought to be selected from topotypical material.
Shell sculpture and standard shell measurements (Figs 3,5) suggest the presence of seven different taxa on Tenerife (5 taxa) and Gran Canaria (3 taxa), with P

\section*{Conclusions}

Preliminary investigations of Pomatias specimens from Tenerife and Gran Canaria by conchological and morphometric methods suggest extant species each and that possibly only one of these species is pres ecognised as chrono-subspecies. Furthermore, it becomes apparen that the names P. laevigatus and P. canariensis cannot be applied to any population of the eastern (Fuerteventura and Lanzarote) or western (La Gomera, El Hierro and La Palma) Canary Islands, and the former, as al ready recognised, is a younger homonym anyway and has to be re
| Acknowledgements

\section*{Signy colection. Philippe Bouchet (MNHNW) and Bernhar}

\section*{References}

 tibithun),
starobocato,\(~\)

Biogeographical approach of Truncatelloidea (Caenogastropoda: Littorinimorpha) in Greece
Nefeli Kassari \({ }^{1,2}\), Katerina Vardinoyannis \({ }^{2}\), Moysis Mylonas \({ }^{1,2}\)
\({ }^{1}\) Biology Department, University of Crete, Irakleio, Greece
\({ }^{2}\) Invertebrate Department, National History Museum of Crete-University of Crete, Irakleio, Greece
Email: ne.kassari@gmail.com

\section*{INTRODUCTION}

Truncatelloidea is the richest superfamily of freshwater gastropods, accounting 3210 species belonging to 360 genera and 31 families (MolluscaBase, 2022). They are found in all freshwater habitats in every freshwater gastropods belong to this superfamily and most of them are found in a single or just a few sites. Greece is considered a biodiversity hotspot for freshwater fauna, including freshwater gastropods (Strong et al., 2008).
In this study we present all the available data for Greece, we bring out certain taxonomical problems, and analyze their diversity and distribution.

\section*{MATERIALS \& METHODS}

Data were retrieved from 305 papers concerning the freshwater gastropods of Greece from 1832 to 2022. Additionally, we analyzed papers from the Balkans and other Mediterranean countries in order to have an overall view for the distribution of
the taxa. More than half of the analyzed papers were published the last 20 years. For each species we recorded, in the eaxa. More than half of the analyzed papers were published the last 20 years. For each species we recorded, in
Microsoft Access database, the exact site it was found, the habitat it was found, the water basin, the geographic region, Mircosolical and taxonomical notes, the Natura 2000 site and their status in the IUCN Red List. The names of the taxa follow
ecologer
the latest taxonomical the latest taxoonomical work or MolluscaBase (2022). Data were analyzed with PAST 4.05 (Hammer et al 2001), while maps
were procuced in ArcGIS.

\section*{RESULTS-DISCUSSION}

According to our results, 149 species of Truncatelloidea are present in Greece, belonging to 36 genera and 7 families. It is worth noting that the last 5 years (after the work of Bank \& Neubert, 2017 who recorded 6 families, 31 genera and 91 species) 54 species have been added to the Greek list, most of
them being newly described species (e.g Gloer \& Hirschfelder, 2019) and few were due to resolved taxonomical problems (e.g. Delicado \& Hauffe, 2022). Even though our attempts, 16 taxa remain doubtful as we couldn't assign them to any known species and further research is needed.
The richest family is Hydrobiidae both in genera (27 out of 36) and species (78 out of 149) (Figure 1), which is also the case in Bulgaria (Georgiev \& Hubenov, 2013), but not for Serbia (Marković et al., which is also the case in Bulgaria (Georgiev \& Hubenov, 2013) and Serbia (Marković et al., 2021). Moreover, 11 out of 36 genera are endemic to Greece (Figure 1), which is among the highest endemism \((30.6 \%)\) recorded for a non-marine faunal group in Greece. All but one endemic genera belong to Hydrobiidae (Figure 1), and only Clameia to Moitessieriidae. Furthermore, 7 non-endemic genera are represented in Greece only by endemic species (Figure 1), a case found also in terrestrial Gastropods (Vardinoyannis et al., 2018) and terrestrial Isopods (Sfenthourakis \& Schmalfuss, 2018).

> Species endemism is the highest recorded in Greece, \(86.6 \%\), both among freshwater (\(25 \%\) for freshwater Fish - Leonardos, 2020; 26\% for freshwater Decapods - Koutrakis et al., 2020) and among terrestrial animals, (\(67 \%\) Isopods - Sfenthourakis \& Schmalfuss, 2018; 59\% terrestrial Gastropods Vardinoyannis et al., 2018). Additionally, most of the endemic species are narrowly endemic, reported from a single or just a few sites, which has been similarly observed in Bulgaria (Georgiev \& Hubenov, 2013). The remaining species are distributed and in the nearby countries. High endemicity is the result of the geomorphology, past and present, of Greece, the limited dispersal ability of these organisms and
the high isolation of the aquatic ecosystems.
> Higher diversity is found in springs (37\%) and lakes (18\%), while most endemic species inhabit springs (41\%) and streams (14\%) (Figure 2). Also, the ancient oligotrophic lakes (Trichonida, Pamvotida, Megali Prespa, Mikri Prespa) stand out as hotspots of endemism as already argued by Albrecht et al. (2012).

Figure 2 . Number of species per ecosystem. Combination symbolizes that a species inhabits Figure 2. Number of species
more than one ecosystem.

Most species have been recorded from Peloponnese (60 species), certain Aegean islands (43) and Central Greece (41), while Crete and Thrace are the least studied, with 8 and 3 species respectively. The me pattern appears in the Greek water basins, and it is worth mentioning that in 3 catchmet there is scarce data for big rivers (e.g. Aliakmonas, Strymonas) or lakes (e.g. Kerkini, Kastoria) and in areas higher than 900 m of altitude. In the clustering analysis most basins were grouped randomly (Figure 4), with the exception of the two Prespa lakes (GR1, GR46), the water basins of Crete (GR39, GR40, GR41) and certain Ionian islands (GR12, GR13, GR34, GR44, GR45). This is in contrast to the division of Greece by Zogaris et al (2009) based on freshwater fish. The random clustering of water basins is due to the small number of species per basin, the many stenoendemic species but mainly to the uneven survey of Greece.

Figure 3. Water Basins of Greece (left). Number of
species per water basin (right).

Figure 4. Clustering of data for faunal
similarities among water basins using
similartites among water basins using UPGMA and Simpon index.
The three red spuares depict the basins that rae erouped together fltrom topp to
bottom: the water basins of crete, that are grouped together frrom top to
oottom the water basiss of crete,
ertain tonian islands and the two certain lonian
Prespa lakes).

Despite the very high richness and endemism of truncatelloidea in Greece and even though \(50 \%\) of species assessed on the IUCN Red List belong to one of the three risk categories (CR, EN, VU) (IUCN, 2022), most of them are not included in the NATURA 2000 protected areas (Figure 5), mostly due to the original delimitation of the areas based Additionally, \(30 \%\) of the assessed species in the AUN Red list are classified as Data Deficient (DD) (IUCN, 2022) which equals limited knowledse of their ecological data, and even if they are threatened we are unable to organize action plans for their protection.

However, the above results may be subject to change and must be carefully taken into consideratio First of all, many species have been described using non-informational characters (e.g. shell characters in Glöer \& Reuselaars, 2020), while little work has been done with unraveling molecular relationships, usually using only COI subunit (e.g. Falniowski \& Szarowska, 2011). Moreover, the fact that not all Greek regions and catchment areas are equall surveyed, provokes concerns about the richness and lakes and rivers, some of which are not studied at all More targeted sampling and clarification of the axonomy through a combined study of morphology and phylogeny are expected to sive better insight and provide a better understanding of this group.

\section*{CONCLUSIONS}
\(>\) Greece is a hotspot of endemism and diversity for Truncatelloidea
\(>\) Truncatelloidea present highest endemism for a non-marine group in Greece
\(>\) Springs are hotspots of endemism and richness, while lakes are hotspots of diversity
\(>\) Hydrobiidae is the most species and genera rich family.
\(>\) Neither regional units nor catchment areas are equally studied in Greece
\(>\) Hardly no clear pattern concerning water basins' faunal composition
\(>50 \%\) of species assessed on the IUCN Red List are considered CR, EN or VU

\title{
Exon design for large-scale phylogeny of

\section*{the Neogastropoda}
}

\section*{the Neogastropoda}
}
menampas

\author{
Thomas Lemarcis \({ }^{1}\), Jawad Abdelkrim \({ }^{2}\), Alessandro Derzelle \({ }^{1}\), Paul Zaharias \({ }^{1}\), Yuri I.
}

Kantor \({ }^{1,3}\), Alexander E. Fedosov \({ }^{1,3}\), Nicolas Puillandre \({ }^{1}\)
- The published 巾eogastropod phylogenies are mostly unresolved and largely incomplete
- Goal: to produce an, as complete as possible, phylogeny using an exon-capture approach
- However, previously used set of baits are not able to capture all specimens/all exons (lots of missing data), and many nodes remain unresolved (Abdelkrim et al. 2018): design of a new set of baits.

METHODS

1 complete annotated proteome

\(2^{\text {nd }}\) batch:
OTHER NEOGASTROPODA + TONNOIDEA/FICOIDEA

\(1^{\text {st }}\) batch
- 384 samples (\(\mathbf{5}\) samples removed
during assembly (no reads))
- 1,124 exons captured
- An average of 1,006 exons per sample
- An average of 326 samples per exon

Phylogenetic Tree:
371 correctly placed samples 8 samples with doubtful placement

\footnotetext{
This action has received funding from the European Union's Horizon 2020 research and innovation program \& European Research Council under grant agreement ERC HYPERDIVERSE (GRANT AGREEMENT 865101)
}

\section*{SENCIKENBERG}
whirlt of bladyminty

\section*{Freshwater mussels (Unionida) in the Senckenberg Collection: a globally important resource for research on status of and changes in aquatic biodiversity}

\author{
Karl-Otto Nagel \({ }^{*}\), Ronald Janssen, Sigrid Hof, Julia Sigwart
}

\section*{1. Collection basics}

Freshwater mussels (Unionida) of the Senckenberg Research Institute and Natural History Museum in Frankfurt represent one of the most important international collections. With approximately \(\mathbf{2 0 , 0 0 0}\) series and \(\mathbf{>} \mathbf{8 0 , 0 0 0}\) specimens, it is among the 10 largest in the world \({ }^{1}\). Its special value is that it formed the basis for the last monograph on this group \({ }^{2}\). It contains about 478 primary type series (holo-, lecto-, neo- and syntypes) and covers ca. 70 \% of the global species diversity of the Unionida. The focus of the collection is the western Palaearctic and especially Europe. Nevertheless, about 197 primary types originate from other areas, which explains the worldwide importance of the collection. It is a research instrument in great demand internationally and represents a data archive of high scientific value.

Collection inventory \({ }_{\text {(ssof } 153.2022)}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Family} & \multirow[t]{2}{*}{N lots*} & \multicolumn{2}{|l|}{species} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { primary } \\
\text { type series }
\end{array}
\]} \\
\hline & & SMF & total \({ }^{1}\) & \\
\hline Margaritiferidae & 867 & 12 & 15 & 13 \\
\hline Unionidae & 16.866 & \(537^{+}\) & 779 & 391 \\
\hline Hyriidae & 858 & \(70^{+}\) & 92 & 37 \\
\hline Mycetopodidae & 496 & \(41^{+}\) & 53 & 30 \\
\hline Iridinidae & 257 & \(26^{+}\) & 39 & 4 \\
\hline Etheriidae & 69 & 4 & 4 & 3 \\
\hline total & 19.413 & 690 & 982 & 478 \\
\hline
\end{tabular}
2. History

Accessions date back to the early \(19^{\text {th }}\) century and comprise among others, the collections of EmiL Adolph Rossmässler (1806-1867), Wilhelm Kobelt (1840-1916) and FRITz HAAS (1886-1969). More recently, material from Heinrich Georg Bronn (18001862), Hermann von lhering (1850-1930), Karl ludwig Pfeiffer (1874-1952), Rolf A.M. Brandt (1917-1989) and HARTwIG Schüтt (1923-2009) added significantly to the Senckenberg Unionida collection.

Founding fathers of Senckenberg's Unionida collection and some of its most important researchers

Fritz HaAs collecting freshwater mussels in the Albufera de VALENCIA IN 1917, SUPPORTED BY LOCAL FISHERWOMEN AND FISHERMEN

\section*{3. What we do}

Digitisation of the old collection and recent additions is currently being completed. Material from North Eurasia and North America has already been revised according to current systematics. Revision of the Palearctic material showed a rate of \(4-6 \%\) of incorrectly determined. This value is likely to be even higher for specimens from other regions. It is therefore essential to look at each individual shell again, even from large series, to avoid erroneous conclusions about the distribution and ecology of species.

\section*{4. What you can expect}

We will shortly publish a revised type catalog, supplemented by information on the overall holdings (scope, focal points, incorporated collections, additions and corrections to the collection history). Collection data and type-related information including pictures will be accessible on the internet (e.g. via Senckenberg's databases AQUiLA and SeSam).

Senckenberg's collection is essential in ongoing revisionary studies of South and Southeast Asian freshwater mussels \({ }^{4}\) and for the Unionida fauna from the Mediterranean and Middle East \({ }^{5,6,7}\).

\section*{References}

Indonaia gratiosa (Philippi, 1843) comb. nov.
npecime
Sple Specimen used in a recent revision of the freshwater mussels of the Indian

parvula Haas, 1908 parvula Haas, 1908
Holotype of a genetically distinct ecotype of the freshwater pearl mussel that recently
became extinct.

The larval forms of Unionida (glochidium, lasidium) provide important information for the systematics and taxonomy of the group. \({ }^{8,9,10}\) So far, these data are usually not available in research museums and collections. In particular, the possibility of a threedimensional representation based on light or scanning electron microscopic images is to be tested.

Acknowledgements
骨

\section*{New insights into the diversity of the 'bug-eating slugs' Aitengidae (Acochlidimorpha, Panpulmonata)}

\author{
Timea P. Neusser \({ }^{1}\), Adam J. Bourke \({ }^{2}\), Katharina M. Jörger \({ }^{3}\), Yasunori Kano \({ }^{4}\), Michael Schrödl1³ \& Bastian Brenzinger \({ }^{3}\)
}

\({ }^{2}\) College of Engineering, Information Technology and the Environment, Charles Darwin
3SNSB - Bavarian State Collection of Zoology. Munich, Germany
Atmosphere and Ocean Research Institute, University of Tokyo, Japan
E-mail: neusser@bio.Imu.de

\section*{INTRODUCTION}

Discovered only in 2009, the family Aitengidae belongs to the panpulmonate Acochlidimorpha and comprises amphibious and terrestrial slug species. The type species Aiteng ater -- selected as mysterious 'bug-eating slug' into the Top 10 New Species list 2010 by the International Institute for Species Exploration - lives on the mud in mangrove forests of Thailand. Since then, only two more species were nominally described: A. mysticus inhabiting the upper intertidal of coastal caves in Japan (Okinawa) and the terrestrial A. marefugitus from Palau. In the present study we give a preliminary overview of the diversity of these nocturnal slugs collected during several sampling events in the Indo-Pacific, including three 'Our planet reviewed' expeditions organized by MNHN Paris.

Habitats and living specimens of Aitengidae. Aiteng mysticus (5 mm) from Japan (A), Vanuatu (\(4-5 \mathrm{~mm}\)) (B), New Caledonia (C). Aiteng n . sp. \(1(10 \mathrm{~mm})\) from Papua New Guinea (D) - A similar species was documented from the Philippines \({ }^{1}\). Aiteng n. sp . 2 from Yap Island (E). Aiteng n. sp. \(3(10 \mathrm{~mm})\) from northeastern New Caledonia (F). Aiteng marefugitus (5 mm) from Palau Island. Specimen found under a calcareous stone
together with an ant nest with eggs and pupae (G). Aiteng cf. ater (4 mm) from Australia (H). Aiteng cf. ater \((6 \mathrm{~mm})\) from southeastern New together with an ant nest with eggs and pupae (G).
Caledonia (I). H and I not included in COI phylogeny.

Distribution of Aitengidae. Australia; O Japan; O© New Caledonia - \(\oplus\) Papua New Guinea; - Palau Island; Philippines; - Thailand; \& Vanuatu; O Yap Island. Type localities without stripes.

Phylogeny of Aitengidae based on COI sequences and informations on the habitat and number of rpd. Tree reconstruction was made in RAxML with GTR+G model, no partitioning to codons and 500 replicates for Felsenstein's bootstrap support values. rpd, renopericardioduct.

Aiteng ater from Thailand. 3Dreconstructions of the animal (dorsal view) (A) and the excretory and ao, aorta; at, atrium; dv, dorsal vessel; p , pericardium; rpd, renopericardioduct; \(\mathbf{p , \text { pericardium; }} \mathrm{rpd}\), renopericardioduct;
\(\mathbf{v}\), ventricle.

Aiteng marefugitus from Palau Island. 3D-reconstructions of the animal (right view) (A) and the excretory and circulatory systems (ventral view) (B). Histological cross-section of the digestive gland with food residue (arrow) of cuticular appearance (C). ao, aorta; dv, dorsal vessel; \(\mathbf{h}\), heart; \(\mathbf{k}\), kidney; nd
- Aitengidae are now known from coastlines of 9 countries in the tropical Indo-West Pacific, with up to five new species which await formal description.
\(>\) Aitengidae are either insectivorous (larvae or pupae), ovivorous (like other freshwater Acochlidimorpha) feeding on snail egg masses or, to be confirmed, feeding on other molluscs by shell drilling.
\(>\) Multiplication of renopericardioducts are known from limnic Acochlidium; the convergent multiplication in Aiteng can be an adaptation to humid (semi-) terrestrial habitats \({ }^{2,3}\).
Sperm transfer occurs via copulation ('head-to-head').

\section*{ACKNOWLEDGEMENTS}

A MOLECULAR APPROACH TO THE PHYLOGENY AND TROPHIC SPECIALIZATION IN OVULIDAE (GASTROPODA: CYPRAEOIDEA)
E. Nocella \({ }^{1-2}\), S.S. Zvonareva \({ }^{3}\), G. Fassio \({ }^{1}\), L. Leotta \({ }^{1}\), S. Schiaparelli \({ }^{4}\), M.V. Modica \({ }^{2}\), M. Oliverio \({ }^{1}\)
\({ }^{1}\) Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
\({ }^{2}\) Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
\({ }^{3}\) Laboratory of Ecology and Morphology of Marine Invertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of
\({ }^{3}\) Laboratory of Ecology and Morphology of Marine Invertebrates, A.N. Severtsov I
Sciences, Moscow, Russia
"anau
\({ }^{4}\) Department for the Study of Territory and its Resources, University of Genoa, Genoa, Italy

\section*{BACKGROUND}
- Cnidarians are consumed as food by multiple gastropod lineages.
- Ovulidae feed on Anthozoa (Octocorallia and Hexacorallia) and on Hydrozoa (Stylasteridae). Over 260 currently Ovulidae accepted species
Predominantly tropical family, with only few species inhabiting temperate waters.
- A broad mantle covers the shells and, in most cases, camouflages the ovulids on the host coral.
Pediculariines are sometimes regarded as a distinct family.
Phylogenies and host specificity information are mostly available for shallow water species.

\[
\begin{aligned}
& \text { AIM } 2 \\
& \text { Reconstructing trophic ecology of the Ovulidae at the } \\
& \text { genus level of the coral host } \\
& \text { METHODOLOGY } \\
& \text { Literature data were integrated with an empirical } \\
& \text { approach: host corals collected with ovulids samples } \\
& \text { were identified either morphologically or genetically, } \\
& \text { applying a species delimitation approach on the } \\
& \text { sequences of the 16S rDNA molecular marker. } \\
& \text { Sequences from a total of } 54 \text { coral samples were } \\
& \text { analyzed }
\end{aligned}
\]

\section*{CONCLUSION..}
- Subfamilies as currently recognized are not monophyletic.
- Pediculariines, whatever their rank, do not include Jenneria and Pseudocypraea, which may represent a distinct lineage.
Most of Ovulidae species are associated with Alcyonacea (Octocorallia), only two species are associated with Hexacorallia and the single Pedicularia genus feeds on Stylasteridae.

\section*{...AND FUTURE PERSPECTIVES}
- Improving phylogenetic analysis by increasing number of outgroups.
- Reconstructing Ovulidae ancestral trophic ecology.

SEM photo of a Cadulus \(s p\). specimen

Studies on the small-sized scaphopod Cadulus thielei Plate, 1909 in the Southern Ocean: A not so rare species and assessing morphometric diversity Lucy Stephenson \({ }^{1}\), Huw Griffiths \({ }^{1}\), Katrin Linse \({ }^{1}\) \({ }^{1}\) British Antarctic Survey, High Cross, Madingley Road, Cambridge, England, CB3 OET, UK
lustep@bas.ac.uk

\section*{Background}
- Southern Ocean contains highly endemic species and is globally important in understanding how biodiversity responds to environmental change, as Antarctica's unique oceanographic and climate history lead to species evolution and diversification happening in isolation.
- Scaphopoda are a low diversity class (around 600 listed worldwide and 13 in the S Ocean).
- Previously only 5 specimens of the scaphopod species Cadulus thielei (Plate, 1909) were reported in the literature, - its' type locality in E Antarctica and 3 sites in the Bellingshausen and Ross seas from 157-438m depth.
- High local abundances were found in epibenthic sledge samples on cruises in the Southern Ocean \({ }^{1}\).

\section*{Objectives}

1 Comprehensive assessment to review bathymetric distribution and range of specimens collected.
2 To conduct shell morphometric analysis and assess whether there is morphometric diversity between different geographic locations.

\section*{Methods}

Epibenthic sledge samples collected on cruises in the in the Southern Ocean have yielded 11782 new specimens,
morphologically assigned to Cadulus thielei.

Figure 1: Map of samples used in the study, currently morphologically assigned
to Cadulus thielei.
- Images taken of scaphopod shells using a Stemi SV 6 stereomircroscope and camera attachment

- Additionally, volume was calculated using the following equation, using the volume of two cylinders:
\[
\begin{aligned}
& \text { Volume }=\pi \text { DistanceMax } \frac{\left(\frac{\text { Maximum Diameter }+ \text { Anterior Diameter }}{2}\right)^{2}}{2} \\
& +\pi(\text { Length - DistanceMax }) \frac{\left(\frac{\text { Maximum Diameter }+ \text { Posterior Diameter }}{2}\right)^{2}}{2}
\end{aligned}
\]
- Only adult specimens (those whose anterior diameter was less than their maximum diameter) were included in analyses.
- R Studio 7.1 was used to carry out regression analysis and principal components analysis.

\section*{Results}

The vertical and spatial range of Cadulus thielei is extended by these new records, confirming it to be a circum-Antarctic species.
It has been found in Southern Ocean samples, spanning from the Amundsen Sea \(\left(110^{\circ} \mathrm{W}\right)\) to the Lazarev Sea \(\left(9^{\circ} \mathrm{E}\right)\), and from South Georgia \(\left(53^{\circ} \mathrm{S}\right)\) to the Filchner Trough \(\left(77^{\circ} \mathrm{S}\right)\). They were collected in \(161-5737 \mathrm{~m}\) depth.

- Linear models showed a negative association between depth and volume (\(F_{1,379}=46.28\), \(R^{2}=0.79, p=0.004091\)).

Figure 3: Canonical variate analyses based on the principal components
(PC1 and PCC2) of the morphological variation recorded among the 2 (PC1 and PC2) of the morrohological variation recorded among the 2
species groups asesed on location. Groups not entirely yeparated along oups based on location. Groups not entirely separa
either PC axes. \(90 \%\) mean confidence ellipses.

Figure 4: Light images (A and B) and SEM photos of radulae (C and D) of Cadulus specimens from the two groups, showing some morphological diversity.

\section*{Conclusions and Ongoing Studies}

The vertical and spatial range of Cadulus thielei is extended by these new records, confirming it to be a circum-Antarctic species.
Negative association of depth with shell size, related to decreasing resource availability with depth. Cadulus sp. 2 were from shallower locations in the N Atlantic vs deeper locations in the S Ocean for Cadulus sp. 1.
A priori hypotheses that specimens from Cadulus sp. 1 and 2 would be morphologically distinct were not supported by PCA analyses or regression. However, morphological distinctions observed in radulae teeth and stereomicrosope photos.
Ongoing COI barcoding is being used to investigate whether genetic diversity exists between the specimens. There is currently a scarcity in the literature of molecular studies on Scaphopoda.
Ongoing studies into how environmental conditions have played a role in the diversity within this group using GBIF/OBIS data.

\section*{References}

Anderson, M. P. B. C., Fenberg, P. B., Grifiths, H. J., \& Linse, K. (2021). Macrobenthic Mollusca of the Prince Gustav Channel., Eastern Antarctic Peninsula: An Area Undergoing Colonisation. Frontiers in Marine Science, 8.
Steiner, G., \& Linse, K. (2000). Systematics and distribution of the Scaphopoda (Mollusca) in the Beagle Channel (Chile). Mitt. Hamb. Zool. Mus. Inst,, 97, 13-30.
0

\title{
Deep water cone snail venomics: protein diversity in the venom of Profundiconus species from New Caledonia (Gastropoda, Conoidea)
}

Manuel Jiménez Tenorio \({ }^{1}\), Juan Carlos G. Galindo², Rafael Zardoya \({ }^{3}\) and Nicolas Puillandre \({ }^{4}\)
\({ }^{1}\) Departamento de CMIM y Química Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, SPAIN. E-mail: manuel.tenorio@uca.es \({ }^{2}\) Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, SPAIN.
\({ }^{3}\) Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, SPAIN
\({ }^{4}\) Muséum National d'Histoire Naturelle, Paris, FRANCE

Conotoxins are bioactive peptide molecules present in the venom secreted by cone snails (Gastropoda, Conidae). In this group, the species within genus Profundiconus are characterized by their deep-water habitat (usually between 100 and 1000 m). A recent study (Fassio et al. 2019) have disclosed for the first time the transcriptome of the venom ducts of two species of Profundiconus, namely P. neocaledonicus Tenorio \& Castelin, 2016, and P. vaubani (Röckel \& Moolenbeek, 1995), both from the New Caledonia region. Some of the sequences found are quite divergent with respect to the typical conotoxins found in other Conidae, and have been defined as profunditoxins. We have now analysed the proteome of the venom duct extracts of these species.

Profundiconus neocaledonicus
Tenorio \& Castelin, 2016

Specimen MNHN-IM2013-68152 SW Ile des Pins, stn DW4703, 22 \({ }^{\circ} 46^{\prime} 10.8012^{\prime \prime} \mathrm{S}\), \(167^{\circ} 19^{\prime} 18.0156^{\prime \prime}, 348-350 \mathrm{~m}\)
Expedition KANACONO, 2016-08-12
\(\mathrm{S}_{\mathrm{L}} 69 \mathrm{~mm}\). Radular tooth shown.
Species distribution and bathymetric range

Profundiconus vaubani
(Röckel \& Moolenbeek, 1995)

LC/MS ANALYSIS OF VENOM DUCT EXTRACTS

UHPLC/MS analysis of the extracts of the venom ducts of \(P\). neocaledonicus (left) and P. vaubani (right) yielded around 26 and 55 monoisotopic mass peaks respectively, corresponding to peptides in the mass range 1000-7000 Da. Tandem LC-MS/MS analysis of the trypsin-digested extracts identified 181 proteins in 48 groups for \(P\). neocaledonicus, and 170 proteins in 42 groups for P. vaubani. 20 top proteins were found in both species. The main components of the venom are venom proteins with molecular mass greater than 10000 Da. Conotoxins represent 41-45 \%.

Venom composition and distribution in superfamilies of conotoxin precursors

The molecular mass distributions are similar for both species. There is an overexpression of conotoxins of the O3-like superfamily in \(P\). neocaledonicus, and of the O1 and O2-like superfamilies in of \(P\). vaubani. Profunditoxin Pvau1_23-PFC01 was identified in the latter, whereas conotoxin Ne6.1 of the A-like superfamily was present in both samples . of P. vaubani. Profunditoxin Pvau1_23-PFC01 was identified in the latter, whereas conotoxin Ne6.1 of the A-like superfamily was present in both sample

MOLECULAR MODELING WITH ALPHAFOLD2
Superposition of the structures of conotoxin Neo6.1 (A-like) (brown) and toxin OmTx 3 from the scorpion Opisthacanthus madagascariensis (blue), a member of the \(\mathrm{K}^{+}\)channel inhibitor \(\square\) kappa-KTx family

Superposition of the struclante at ictobirnin Prewi z3PFC01 (brown) and conoto Cillot ins idereus californicus (blue).

FUNDING
This work was supported by the Spanish Ministry of Science and Innovation (PID2019-103947GB-C22/AEI/10.13039/501100011033 to RZ), the French Agence Nationale de la Recherche - France (project CONOTAX, ANR-13-JSV7-0013-01 to NP) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 865101 to NP)

\title{
Integrative species delimitation within the genus Milax (Gastropoda: Eupulmonata) based on morphology and DNA barcoding
}

\author{
Kamila S. Zajac \({ }^{1}\), Paulina Gqsienica², Dorota Lachowska-Cierlik \({ }^{3}\)
}
\({ }^{1}\) - Nature Education Centre, Jagiellonian University, Kraków, Poland; \({ }^{2}\) - Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland; \({ }^{3}\) - Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland

\section*{INTRODUCTION}

Milacidae is one of the least known families of terrestrial gastropods grouped into two genera: Milax Gray, 1855, and Tandonia Lessona \& Pollonera, 1882. Some of them are widely distributed, whereas others occur only locally. Some species have economic significance and are therefore important for people; they play a role in gardening and horticulture as they pose a serious threat to cultivated plants, vegetables, and fruits. For this reason, most of the research on these slugs was concerned with the impact of various substances and factors on their population dynamics and the development of methods to reduce their feeding on plants so far.

In Poland, in the Museum of Natural History in Wrocław (MNHW) there is the richest collection of slugs, thanks to the hard and excellent work of prof. Andrzej Wiktor a malacologist, a world class specialist in the field of gastropods taxonomy. Prof. Andrzej Wiktor described many species new to science during his carrier. In total he described about 60 new species for science.

\section*{Fig. 1. Slug collection in MNHW.}

In the presented study we investigated genetically and morphologically two Milax species: M. gagates (Draparnaud, 1801) and M. nigricans (Schultz, 1836) from the collection of the Wrocław Museum of Natural History. According to data from the literature, these two species should be treated as a single species, as was done in the past by the majority of malacologists.

METHODOLOGY

morphological data collection:
- microphotographs of genital anatomy
- schematic drawings of genital anatomy

Fig. 2. Schematic overview of the workflow.

Fig. 3. External appearance and distribution of \(M\). gagates (A-B) and M. nigricans (C-D) (source: Wikipedia; Animalbase).

RESULTS

Fig. 4. Schematic drawings of genitalia of M. gagates (A) and M. nigricans (B) after Wiktor (1987). Scale bars \(=1 \mathrm{~mm}\).

Fig. 5. Maximum-Likelihood phylogeny of Milax species based on multiple molecular markers.

\section*{ACKNOWLEDGEMENTS}

We would like to thank Jolanta Jurkowska and the Museum of Natural History, Wroctaw University (Poland) for
making the collection of Prof. Andrrei Wiktor available for this study. This work was supported by a grant from the Jagiellonian University (DS/D/WB/INOS/8/2019).

\title{
Arcoid (Bivalvia) migration into the Late Permian Zechstein Basin of Central Europe
}

\author{
Julia C. Friedel \& Michael R.W. Amler
}

University of Fologne, Institute of Geology and Mineralogy, Zülicher Str. 499 , 50674 Cologne, Germany, julia.friedel@@ni-koel..de, michael.amler@uni-koeln.de

\section*{Introduction}

The Zechstein Basin was an épicontinental sea on the Central European mainland in the Late Permian (Lopingian; 258-250 Mya) subdivided into the Northern Permian Basin (NPB) and the Southern Permian Basin (SPB). It stretched from present-day England to the Baltic, from southwestern Germany to the North Sea. Due to arid climate and limited seawater influx, hypersaline conditions with evaporites dominated. Fossils are mostly known from the dolomitic reef complexes of the lower Werra Formation (Z1 Cycle), lower Zechstein \({ }^{1,2}\). It is assumed that the Zechstein Basin was flooded mainly from a northerly direction, from the Arctic Sea via the Central and Viking rifts, but water influx from the Tethys into the Polish Subbasin is also recorded.
Late Permian arcoid bivalves had a distribution in fully marine environments and immigrated into the Zechstein Basin with the first ingression of seawater. Therefore, the conditions were fully marine and successively became higher saline during the Werra Cycle (\(Z_{1}\)), until finally unacceptable environmental conditions prevailed. Later, during the Staßfurt (Z2) and Leine (Z3) cycles, different species re-immigrated from the Arctic Sea into the Central European Basin, but arcoids are only known from the first marine ingression.

\section*{Arcoid Morphology}

left and above: Parallelodon meridionalis (De Koninck, 1885), Carboniferous, in lateral view (above) and hinge line with dentition (left). Length: 3 cm .

Arcoidea, a superfamily of bivalves, has an elongated, rounded rectangular shape with variable ornamentation. Systematically important is the long hinge plate with two groups of dentition and the organic duplivincular ligament. Within the superfamily Arcoidea, the Parallelodontidae is the only family that occurred in the Permian.

\section*{Ecology}

Due to their numerous life habits, bivalves are good indicators for the reconstructing past ecological conditions. From Recent arcoids it is known that this group can produce a byssus, i.e. organic filaments for attachment to rocks or shells, a structure better known in mussels \({ }^{3}\).

With a planktic larval stage, a widespread distribution in the whole basin was possible and the adaptation to slightly increasing hypersaline conditions restricted the bivalves (and other biota) of the Zechstein Basin to an endemic fauna.

\section*{Zechstein Basin}

Until now, Parallelodon striatus, the only arcoid species of the Zechstein Basin, is only known from the SPB. Sedimentary rocks occur abundantly in many outcrops in Central Germany, Poland and East England. However, the NPB is poorly accessible and only known from boreholes. Due to the marine connection to the Arctic Sea, it seems very likely that \(P\). striatus also occurred in the NPB, but as yet occurrences of \(P\). striatus are not recorded.

above: Parallelodon striatus (Schlotheim, 1816)4 (in lateral view; length 10 mm) has compact and rounded shells with dominating radial ribs. The taxon is well documented based on ample material from many outcrops along the southern margin of the basin.

above: Overview of the Permian Zechstein Basin in Central Europe \({ }^{1}\). Stars indicate arcoid occurrences. Rose: deeper water (sedimentation of salt), light blue: shelf and platform (sedimentation of carbonate \& anhydrite), brown: continental sediments, blue: open marine environment.

In the Permian, many parallelodontids were described from the Ural strait and the northern Tethys. With the closing of the Ural during the Permian and the warm climate, the Uralian species also migrated to the Arctic Sea. One of which, Parallelodon suzukii occurring in Spitsbergen is assumed link and ancestor of \(P\). striatus. P. suzukii shows great morphological similarity to \(P\). striatus and lived in the Central and Viking rifts, the direct connection to the Zechstein Basin.
below: Parallelodon suzukii (Nakazawa, 1999) \({ }^{5}\) (in lateral view; length 41 mm) has a similar, although more elongated shape than \(P\). striatus and shows more numerous radial ribs.

\section*{Conclusions}
> Arcoids are found in the Zechstein Basin only within the Werra Formation (\(Z_{1}\)), unlike other bivalves and further biota which also occur in the following formations.
> Each of the Zechstein formations represents a marine ingression into the Zechstein Basin through the northern Central and Viking rifts, with the organisms entering the basin accordingly.
> Climatic conditions caused increasing salinity and evaporation, which lead to the repeated extinction of organisms during each cycle.
> Due to matching morphology of \(P\). striatus to the Permian species from Spitsbergen (P. suzukii), at that time located at the northern Central Rift, and more distant morphological similarity to Uralian species an immigration from the Ural across the Arctic Sea into the NPB is assumed. This assumption matches well with observations from other biota.
> Connection to the Tethys via the Polish Subbasin is also mentioned by authors. Therefore, it cannot be completely excluded that Uralian and northern Tethyan species could have immigrated into the SPB through a possible Tornquist-Teisseyre corridor, even if this is not supported by bivalves \({ }^{6}\).

Acknowledgements We would like to thank F. Hrouda, Museum
für Naturknude für Naturkunde Gera, Dr. E. Mönnig,
Naturkunde-Museum Coburg and Dr. S. Narurkunde-Museum Coburg and Dr. S.
Brantl for providing well-preserved Permian material.

References
PAUL, J. \& HEGGEMANN, H. (2020): Stratigraphie von Deutschland. 12 Zechstein. Schriftenre ihe der Deutschen Gesellschaft für Geowissenschaften, 89 . ZIEGLER, P.A. (1982): Geological Atlas of Western and Central Europe. Shell
Internationale Petroleum Maatschappii BV. Text and Enclosures. STANLEY, S.M. (1972): Functional Morphology and Evolution of Bys Bivalve Mollusks. - Journal of Paleontology, 46: 165-212.

SCHLOTHEIM, E. von, 1816-1817 (1820): Beyträge zur Naturgeschichte der Versteinerungen in geo gnostischer Hinsicht. - Abh. Denkschr. Kgl. Akad. Wiss. München; Cl. Math. Naturwiss., 6: 13-36. NAKAZAWA, K. (1999): Permian bivalves from West Spitsbergen, Svalbard Islands, Norway. Paleontological Research, 3(1): :1-17.
PERYT, T.M., GELUK, M., MATHESEN, A., PAUL, J. \& SmTH, K. (2010): Chapter 8 Zechstein, in DOorNENBAL, H. \& STEVENSON, A., eds., Petroleum Geological Atlas of the Southern Permian Basin
Area. EAGE Publications, Houten, 123-147.

\section*{Chromosomal-level Whole Genome of the Small Giant Clam Tridacna maxima (Subfamily Tridacninae)}

Ruiqi Li \(1^{* *}\), Carlos Leiva², Sarah Lemer², Jingchun Lii,3
\({ }^{1}\) Ecology \& Evolutionary Biology, University of Colorado Boulder, Boulder, USA
\({ }^{2}\) Marine Laboratory, University of Guam, Guam, USA
\({ }^{3}\) Museum of Natural History, University of Colorado Boulder, Boulder, USA

Figure 1. Photo of the the small giant clam Tridacna maxima. Note that the colors of mantles can vary from yellow to blue. Photo from Wikipedia Genome Statistics

Table 1. Whole genome statistics. Data summarized from genome assembly report from Dovetail Genomics, QUAST (Quality Assessment Tool for Genome Assemblies) results, and BUSCO results.
\begin{tabular}{|l|r}
\hline Sequencing Company & Dovetail Genomics \\
\hline Sequencing Methods & PacBio +Hi-C \\
\hline Sequencing Depth & \(60 \mathrm{X}+30 \mathrm{X}\) \\
\hline Contigs & 13908 \\
\hline Genome Size & 1.32 Gbp \\
\hline N50 & 64 Mbp \\
\hline L50 & 9 \\
\hline Number of & \(18(1.14 \mathrm{Gbp}, 86 \%)\) \\
\hline Chromosomes & \(0.12 \%\) \\
\hline Missing Bases & 31,746 \\
\hline Total Number of Genes & \(36.35 \%\) \\
\hline GC content & \(99.86 \%\) \\
\hline \begin{tabular}{l}
K-mer-based \\
completeness
\end{tabular} & \(84 \%\) \\
\hline BUSCO completeness & \\
\hline
\end{tabular}

Figure 2. Genome QC results showing contig GC contents and contig lengths, summarized from QUAST output.

Figure 3. Karyotype representation of The T. maxima genome with gene density (250 Kbp windows). The total size of 18 chromosomes is 1.14 Gbp , which is \(86 \%\) of the whole assembly.

Figure 5. Pairwise Sequentially Markovian Coalescent (PSMC) results using 10 years per generation and a mutation rate of \(0.1 \times 10-8\) (Liu et al., 2020). Time is shown in million years ago, more recent on the left. Effective population size with 100 bootstraps is represented in red, number of global reef sites is shown in green (adapted from Kiessling, 2009).

Figure 4. Phylogenetic position of Tridacna maxima. The maximum likelihood tree was constructed from 629 single copy orthogroups which have at least \(73 \%\) (\(8 / 11\) species) representation (bootstrap=1000). An annelid genome and a brachiopod genome were used as outgroups. Q.yeast+F+R4 was used as the substitution model.

Figure 6. Comparative analyses of 4 bivalve and 1 gastropod genomes The Venn diagram shows the unique and shared gene families among the 5 genomes. Results are summarized from the OrthoFinder results.

Figure 7. Number of gene families that are expanded (red) and extraction (green) of 5 Mollusk genomes. Results were adapted from CAFÉ (Computational Analysis of gene Family Evolution) results.

Table 2.1 Functions of selected gene families that are expanded in the Tridacna maxima genome. Results were summarized from CAFÉ output and eggnog mapper annotations. Bold: possible symbiosis related genes; *: possible growth regulation related genes.

Ammonium Transporter Family
\begin{tabular}{|l|}
\hline Reverse transcriptase* \\
\hline Ribonuclease H protein \\
\hline
\end{tabular}
regulation of transcription
chromatin organization*
steroid hormone mediated signaling pathway*
mannose metabolic process
collagen \({ }^{*}\)
positive regulation of TOR signaling
DDE superfamily endonuclease
proton channel activity
Table 2.2 Functions of selected gene families that are expanded in both Tridacna maxima and Archivesica marissinica (deep sea symbiotic bivalve) genomes.

\section*{Function}
\begin{tabular}{|l|}
\hline Reverse transcriptase* \\
\hline Ribonuclease H protein \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Ribonuclease H protein \\
\hline proton channel activity \\
\hline
\end{tabular}
proton channel activity
DNA polymerase type \(\mathrm{B}^{*}\)

\section*{Conclusion}
- Global population size shifts of small giant clam correspond to the expansion and decline of modern coral reefs.
- The high-quality chromosome assembly of the small giant clam (Tridacna maxima) provide an opportunity to reveal the genomic basis and evolution of bivalve-Symbiodiniaceae symbiosis.

The regulation of symbiosis may involve expanded gene families related to nutrient transportation (e.g., ammonium transporter), transcription regulation, and growth regulation.

Email: Ruiqi.Li@Colorado.edu

\section*{Terebralia - a mudflat and mangrove dwelling gastropod genus of the Cenozoic}

Danae Thivaiou \({ }^{1}\), Mathias Harzhauser², Efterpi Koskeridou \({ }^{1}\)
National and Kapodistrian University of Athens, Zografou University Campus, Greece
\({ }^{2}\) Natural History Museum Vienna, Austria

\section*{Finding reticulated evolution in the fossil record,}

\section*{Ulish Wienker}

Cuigeo Sclemfict, Marmai, Cermury
Emtik eroseboidcaícemalifcom

\section*{introdaction}

 Fermimah:

 band itoriad

 Bivativin

\section*{Metheds}
 Bi his (0)

\section*{Refercams}

\section*{Resular and Dlscassion (1)}

 AREN/

 कr itan

\section*{Revalts and Mifeusifan (2)}
 weokimentwe

\section*{Comectasion und Oetliouk}

\section*{Achoowlodgcomens}

गhe nates orint

Nowneme : 69pent

\section*{Production of Mytilus galloprovincialis spat from \\ ASSEMBLE cryopreserved larvae of successive generations}

\section*{UniversidadeVigo}

Pablo Heres \({ }^{1}\), Jesús Troncoso \({ }^{1 *}\), Estefania Paredes \({ }^{1}\)
INTRODUCTION. The shellfish aquaculture is reliable to catches of wild seed \(\rightarrow\) conditioned by environmental variations, the climate change, pathogens, competitors, predators, the pollution and limitations imposed by the seasonal spawning.
Aım. 1. To study potential long-term effects of cryopreservation on larvae of successive generations. 2. To study the capacity of the larval cryopreservation protocol described in Paredes et al., 2021 and Heres et al., under review of producing competent mussel spat.
IN ORDER TO: improve aquaculture production; diminish the reliance of seasonal supply of natural mussel spat; avoid hazards of natural populations; capacity to implement other techniques on aquaculture (selective breeding).

EXPERIMENTAL DESIGN.

Selected 72 h-old D larva (Fig. 1). Cryopreserved in 10\% Ethylene-Glycol + 0.4 M Trehalose in Sea Water (Paredes et al., 2021; Heres et al., under review): cooling rate: \(-1^{\circ} \mathrm{C} / \mathrm{min}\) / thawing by immersion into a water bath at \(35^{\circ} \mathrm{C}\).
First generation of larvae Cultured into 150 L tanks (Fig. 2) for 22 days post-fertilization, with aeration and feeding. Sampling periodically for survival counts and shell measurements.
Developed pediveliger larvae cultured into settlement drums (Fig. 3) for 33 days. At the end, mussel juveniles collected for total counts.
Spat cultured for 27 days to allow the settlement on ropes (Fig. 4) and transported to rafts to study its development (Fig. 5).
Second generation of larvae. Obtained two years after. Cultured into 150 L tanks (Fig. 2) for 22 days and transferred to settlement drums (Fig. 3) to study settlement success.

Results.
First generation of larvae

\section*{Conclusions.}

Cryopreservation yields a decrease on larval survival and a delay on larval development, but from settlement onwards, the resulting juveniles are able to develop as fast as control individuals. Cryopreservation does not compromise gamete quality and viability of the following generations.
Acknowledgements. This research was funded by the Consellería de Educación, Universidad y Formación Profesional da Xunta de Galicia (Spain) (P.H. PhD programme grant) and Assemble+, grant from the European Union's Horizon 2020 research and innovation programme (No. 730984). Authors would like to acknowledge the staff of Centro de Investigación Mariña-Estación de Ciencias Mariñas de Toralla (CIM-ECIMAT) for their skilled assistance.

\title{
The modern distribution of Hendersonia occulta (Say, 1831) (Gastropoda: Helicinidae) in Illinois, U.S.A.
}

\author{
Jochen Gerber \\ Gantz Family Collections Center, Field Museum of Natural History, Chicago, U.S.A
}

The cherrystone drop, Hendersonia occulta (Say, 1831), is one of only four species of the operculate land snail family Helicinidae occurring in North America (north of Mexico). It has currently a disjunct distribution with known populations clustering in the midwestern states of lowa, Wisconsin, Minnesota and Michigan in the West, and the Appalachian mountains from Pennsylvania to Tennessee in the East (Hubricht 1985, Lynum et al. 2013). Outlying, isolated populations have been reported from central Missouri (Oesch et al. 2013), eastcentral Kansas (van der Schalie 1939), northeastern Oklahoma (Branson 1963) and central llinois (see below).

In Pleistocene deposits, Hendersonia occulta is known from a much larger area: Toronto, Ontario, Canada (Clarke 1966) south to southern Mississippi, west to south-central Nebraska and north-central Kansas, east to northeast Ohio (Hubricht 1985).

Modern (blackened counties) and fossil (x) distribution of \(H\). occulta. Based on Hubricht 1985, with additions.

Previous reports of modern Hendersonia occulta in Illinois
Pilsbry (1897: 46) lists "Athens, III." among the modern occurrences of \(H\). occulta. Pilsbry (1948: 1088) again lists Athens, Menard Co., as a Recent record and gives E. Hall (= Elihu Hall) as the source for the record. All subsequent mentions of modern H . occulta in Illinois are based on Pilsbry. Elihu Hall (1822-1882) was an early Illinois malacologist who resided in Athens, Menard Co., Illinois. Hall's collection is deposited at the Field Museum. It contains exactly one specimen (FMNH 15376) of \(H\). occulta which consequently is the voucher for Pilsbry's (loc. Cit.) Illinois record and all its subsequent citations. Its label reads, "Lick Branch nr. Athens, Menard Co., III." The specimen is devoid of a periostracum, chalky white, and filled with fine, silty sediment. Its condition is consistent with that of a Pleistocene fossil. H. occulta has been recorded from Pleistocene deposits in Menard County (Leonard \& Frye 1960, Leonard, Frye \& Johnson 1971).
In conclusion, previous modern records of \(H\). occulta in Illinois are erroneous and actually refer to a fossil specimen.

Hendersonia occulta in Jo Daviess County, Illinois
During a terrestrial gastropod survey in 2019 in Apple River Canyon State Park in northwestern Jo Daviess County, Illinois, live H. occulta were collected at two sites.

Both stations are well shaded by tree cover, characterized by an ample layer of leaf litter and the presence of dolomite outcroppings. At one station, the presence of cool-air vents, crevices in the rock from which cool air escapes, is worth mentioning.

Habitat of \(H\). occulta at Apple River Canyon State Park, Jo Daviess Co.

Living \(H\). occulta from the site on the left

Apple River Canyon State Park is located in the North-East corner of Jo Daviess County. The County itself is the northwestern-most county in Illinois, bordering lowa to the west and Wisconsin to the north. Jo Daviess County marks the southeastern edge of the "Driftless Area" in southwestern Wisconsin, southeastern Minnesota, northeastern Iowa, and northwestern Illinois. The Driftless Area remained unglaciated during the last (Wisconsin) ice age. In addition, the Area's unusual topography provides habitats suitable for cold-adapted species, such as deep, moist ravines, shaded dolomite cliffs and algific talus slopes. As a consequence, the Driftless Area serves as a refugium for plant and animal species that were extirpated from large parts of North America by either the advancing ice shields or by postglacial warming and the habitat changes in its wake.

The modern distribution of H . occulta is disjunct with populations in the Upper Midwest of the United States in the West and the Appalachian Mountains in the East. Considering the numerous fossil occurrences in between, these areas can be interpreted as a relict distribution. H. occulta has long been known to live in the Driftless Area of lowa, Minnesota and Wisconsin (Hubricht 1985, Lynum et al. 2013, and references therein). The discovery in Apple River Canyon is the first record of the species in the Illinois portion of the Driftless Area and currently the only modern record in that state.
Modern distribution of H . occulta in Illinois and adjacent states. Open circles: counties with Hendersonia populations
Solid circle: Jo Daviess Co., Illinois, with a living Hendersonia
population
x : Menard Co., Illinois, erroneously presumed to have living Hendersonia

\section*{References}

Branson, B.A. 1963. New Mollusk Records from Oklahoma and their zoogeographical significance. Transactions of the Kansas Academy of Science 66(3): 501-512.
Clarke, A.H. 1966. Interglacial Hendersonia occulta in Canada. The Nautilus 79(4): 137-138. Hubricht, L. 1985. The distributions of the native land mollusks of the eastern United States. Fieldiana: Zoology, New Series 24: i-viii, 1-191.
Leonard, A.B. \& Frye, C. 1960. Wisconsinan molluscan faunas of the Illinois Valley region. Illinois State Geological Survey Circular 304: 1-32, pls. 1-4.
Leonard, A.B., Frye, C. \& Johnson, W.H. 1971. Illinoian and Kansan molluscan faunas of Illinois. Illinois State Geological Survey Circular 461: 1-24.
Lynum, C. A., Amundson, R., Kuchta, M., Little, A. M., Hyde, T. \& Perez, K. E. 2013. Hendersonia occulta (Say, 1831), the Cherrystone drop snail (Gastropoda: Helicinidae), extended geographic distribution, Wisconsin, USA. Check List 9(2): 472-474.
Oesch, R. D., Watrous, L. E. \& Barnhart, M. C. 2013. Land snails \& slugs of Missouri. Missouri Department of Conservation. 217 pp .
Pilsbry, H. A. 1897. A classified catalogue of American land shells, with localities. The Nautilus, 11(4): 45-48, (5): 59-60, (6): 71-72.

Pilsbry, H.A. 1948. Land Mollusca of North America (north of Mexico). Academy of Natural Sciences of Philadelphia, Monograph 3(2): xlvii, 521-1113.
van der Schalie, H. 1939. Hendersonia occulta (Say) in Michigan; its distribution, ecology, and geological significance. Occasional Papers of the Museum of Zoology, University of Michigan 399: 1-8.

\section*{Quaternary palaeobiogeography of continental molluscs: a European project}

N. Limondin-Lozouet \({ }^{1}\), C. Legentil \({ }^{1}\), S. Granai \({ }^{1}\), O. Moine \({ }^{1}\), J. Horácková \({ }^{2}\), L. Juricková \({ }^{3}\), M. Horsák \({ }^{4}\), I. Baly \({ }^{5}\), V. Fichet \({ }^{1}\)
1. Laboratoire de Géographie Physique, UMR 8591 CNRS, Université Paris 1, UPEC, Thiais, France. 2. Department of LLandscape and UUban Planning, Faculty of Environmental Sciences, CZech
3. Department of Zoology, Faculty of Science, Charles University in Prague, Czech Republic. 3. Department of Zoology, Faculty of Science, Charles University in Prague, Czeec
4. Department of Botany and Zoology, Masary U niversity, Broo, Czech Republic
5. 4. Department of Botany and Zoology, Masara, Uni
5. UMS 3468 CNRS-MNHN, BBEESP Paris, France nicole.lozouet@lgp.cnrs.fr

IIU UII I
Henvit
-inkersity
Quaternary climatic cyclicity strongly influenced diversity and distribution of land snails. European territories located at the edge of the Pleistocene ice sheets, were particularly affected by climatic changes.

\(\square\) Ice \(\square\) Tundra \(\square\) Boreal forest \(\square\) Deciduous and conifer forest \(\square\) Mediterranean scrub \(\square\) Prairie-Steppe Vegetation distribution within a climatic cycle
During glacial times most species retreated to southern refugia, conversely during interglacial periods many snails distribution areas re-extended towards northern regions.

Current distribution of continental molluscs is directly inherited from repeated climatic oscillations during the Quaternary.

The Quaternary malacological record can provide insight into the evolution of the group diversity and associated causes of these variations over a long period of time, as well as on the timing of both species retreat/extension and extinction rates during climatic cycles. Therefore mapping the expansion of land snails over time is an important key to understanding the current status and distribution of species and helping to predict potential distributions with accuracy.

The "European Quaternary Molluscan Database" aims to provide maps of species distribution at different periods and tables of reliable well-dated malacological counts recovered from Quaternary deposits across Europe.

\title{
Mussel memory: History lessons from freshwater bivalves
}

\author{
Isobel S. Ollard \({ }^{1}\), David C. Aldridge
}

\author{
\({ }^{1}\) Department of Zoology, University of Cambridge, Cambridge, United Kingdom Email: iso21@cam.ac.uk
}

\section*{Background}
- Freshwater mussels (Unionida) are a globally widespread taxon with key impacts on river and lake ecosystems, including water filtration, habitat creation and nutrient cycling - Mussels are declining globally and face a suite of threats including pollution, habitat alteration and invasive species \({ }^{2}\)

To track this decline, information is needed on long-term trajectories of mussel populations. This requires baseline data to reconstruct historical population characteristics.
A 1964 survey of mussels in the River Thames at Reading, UK \({ }^{3}\), is one of the earliest quantitative surveys of freshwater mussel population parameters. We resurveyed the site in 2020 and compared mussel species composition, population density, growth rates and production to assess change in the past half century in this major river.

\section*{Methods}
- We replicated surveys conducted in 1964, using quadrat hand-searching and dredging. Surveys were split between four depth zones, giving population density estimates for each. - We measured growth rates for individual mussels using external shell annuli, which are formed on an annual basis, to calculate Von Bertalanffy growth curves. - We obtained abiotic data for the period 1970-2020 from the Environment Agency \({ }^{4}\).

- Figure 1: Growth rates for mussels in 1964 (black line and points) and 2020 (coloured line and boxplots). Data for 1964 is available as averages only. For all species, growth rates are significantly lower in 2020 than in 1964.

4igure 2: Population density, separated by species an
with no live individuals of \(P\). complanata found in 2020 .
V Figure 3: Changes in orthophosphate and nitrate concentrations (measured at Caversham Weir, River Thames) 1970-2020. Significant declines have
occurred in occurred in concentrations of both nutrients.

\section*{Results and conclusions}

Densities were significantly lower in 2020 for all species except Unio tumidus. Anodonta anatina and Unio pictorum declined to \(1.1 \%\) and \(3.2 \%\) of 1964 density respectively.
Species composition has changed: no live Pseudanodonta complanata were found in 2020, and U. tumidus now dominates. Invasive Dreissena polymorpha and Corbicula fluminea are now present. Individual growth rates were reduced by \(10-35 \%\) in 2020 in all extant unionid species. Overall estimated annual biomass production declined by \(92.5 \%\).
Concentrations of nitrate and phosphate have declined steadily at the site over the study period.
Declines in unionids may be due to both pressure from invasive bivalves and from declining nutrient levels and food availability.

\section*{Future directions}

We documented change at a single site. Integrating data on
We used baseline data from 1966. A more complete picture of anthropogenic declines requires pre-anthropogenic baseline data on mussels, from sources such as sub-fossil shells. Examine relationship between individual growth rate and fitness / health.
- Extend monitoring of 'common' species to improve ability to detect declines.

\section*{References}
. Vaughn, 2018. Hydrobiologia, 810(1), 15
2. Lopes-Lima et al., 2018. Hydrobiologia, 810(1), 1 .

\footnotetext{
3. Negus, 1966. J. Anim. Ecol., 35(3), 513.
4. Environment Agency, 2021. Water Quality Archive. https://environment.data.gov.uk/water-quality/view/sampling-point/TH-PTHR0080
}

INIVERSTTYOF
CAMBRIDGE
\begin{tabular}{ll}
\hline Supported by: & Acknowledgements: \\
Whitten Studentship (Department of Zoology, University of Cambridge) & Thanks to James Gay and staff at Wokingham Waterside Centre, and to Tina Manthorpe \\
Clare College, University of Cambridge & (née Negus). \\
\hline
\end{tabular}

\title{
New freshwater molluscs from the Pleistocene lignite-bearing Megalopolis Basin (Greece)
}

\section*{Introduction}

The present study deals with mollusc faunas recovered from the Megalopolis Basin in central Peloponnese (Fig. 1), extracted from organic-rich sediments (from brown coal to xyloid lignite). Most specifically the sampled sequence came from Choremi mine (Fig. 2). The fossiliferous layers consists fluvial and lacustrine sediments, deposited during the Pliocene to middle Pleistocene. This basin is one of the few in this area presenting a continuous sedimentary sequence.
The first systematic record of mollusc faunas from the Pleistocene of southern Greece providing significant data on their taxonomy, palaeoecology and palaeoenvironment is presented herein. In addition, the reconstruction of the palaeo-environments will sheds light on the evolution of the Megalopolis palaeo-lake in relation to climatic fluctuations that occurred during the Pleistocene. The new assemblages provide new insights in the evolution of Pleistocene Greek mollusc faunas from an area, which was missing so far from the European map.

Figure 1: Location of the sampling area in Megalopolis Basin, Central Peloponnese, Southern Greece; Figure 2: Location of Choremi mine in Megalopolis Basin, Peloponnese, Southern Greece.

\section*{Results}

The studied material includes assemblages that are typical for lacustrine environments, and which suggest fluctuations in oxygen levels. Until now, twenty different species of molluscs (gastropods and bivalves) have been identified (Plate 1) including Lymnaeidae sp. (1a, b), Acroloxus lacustris (2a-c), Gyraulus sp. (3a-c), Bithynia sp. (4a, b), Gyraulus crista (5a, b), Gyraulus cf. albus (6a-c), Valvata cf. macrostoma (7a-c), Valvata cristata, Planorbis sp., Segmentina nitida, Lymnaea sp. (8a, b), Oxyloma sp. and Pisidium personatum, illustrating the dynamic environments of the Megalopolis palaeolake.

Plate 1: Most common species found in the recovered fossil material a, b, c represents a different side of each specimen.

\section*{Sampled material}

Middle Pleistocene: coarse and fine sediments representing glacial and interglacial periods - - - - \(>\) respectively are recorded by the lake.

Figure 3: Geochronological time scale of Pliocene Pleistocene. The blue box highlights the age of Choremi sequence (van Vugt et al., 2001).

\section*{Conclusions - next steps}
- The Middle Pleistocene depositional environment of Choremi section is characterized by freshwater taxa.
- Environmental fluctuations shows alternations in the area of the Megalopolis palaeo-lake.

Freshwater lake with rich vegetation \(\rightarrow\) Marshland
- Fossils were found in organic-rich sediments indicating deposition during warm-humid time period (interglacial).
- New information for the Middle Pleistocene includes new occurrences of freshwater molluscs for the first time in this biogeographic area.
- Study of Tripotamo location outside of the Megalopolis lignite basin.
- Study of Ptolemais lignite-bearing basin, in order to have a complete record of the molluscan faunas (Pliocene-Pleistocene) of the great palaeolakes of Greece. Differences and similarities.
- Investigate the potential role of Greece as a refugium during glacial time periods.

Aknowledgment
Thanks to Unitas Malacologica for the financial support to attend the World Congress of Malacology, 2022.

\section*{Reference}
van Vugt, N., Langereis,C.G., Hilgen, F.J., 2001. Orbital forcing in Pliocene -
Pleistocene Mediterranean lacustrin deposits: dominant expressions of eccentricity versus precession. Palaeogeogr. Paleoclimatol. Palaeoecol. 172, 193-20.

\section*{Molluses as Bloindicators of Paleoclimate and Paleoenvironment in Sediments of Neotropical Aquatic Ecosystems \\ Karla Rubio-Sandoval, Nancy Yolimar Suárez-Mozo, Augusto Luiz Ferreira-Jínior, Alexander Correa-Metrio, Nuno Simöes, Paula Spotorno-Oliveira, Susete Wambier Christo, Maria Cristina Souza, Rodolfo José Angulo, Mark Brenner, Alessio Rovere, Liseth Pérez}

\section*{INTRODUCTION}

Lake and marine sediments are used to explore past changes in climate and environment.Inferences about the past rely on analyses of physical, chemical and biological indicators.

3' Molluscs are one of the most abundant groups in aquatic ecosystems and can be used as environmental indicators since their abundances vary depending on fluctuations in the environmental conditions.We used sedimented mollusc remains (gastropods and bivalves) to infer Late Holocene environmental conditions.

\section*{STUDY AREA}

The study area includes four aquatic ecosystems (fresh, brackish, marine) in the Neotropics: Nahá Lake (Chiapas, Mex co), o at al Ría Lagartos Lagoon (Yucatán, Mexico), llha do Mel and llha de Currais islands (Paranaguá, Brazil).

Figure 1. Study area in the neotropics, Nahá Lake and Ria Lagartos Islands in southern Brazil.

\section*{METHODOLOGY}

LAKE \& LAGOON
The methodological process consisted in: 1) Recovering the sedimentary sequence, 2) Build the age model, 3) Analysis of biological indicators.

\section*{ISLANDS}

The methodological process consisted in: 1) Identification of the vermetid reef, 2) Survey of the elevation data, 3) Sampling and Chronology, 4) Analysis of biological indicators.

RESULTS \& DISCUSSION

ISLANDS

\section*{CONCLUSIONS}

The freshwater gastropod community in Lake Nahá was sensitive to changes in water level and trophic state.

The malacological assemblages in the coastal lagoon record show they responded to climate events such as hurricanes and recent human impacts.
(6) Vermetid reefs are indicators of past sea level changes.

\section*{ACKNOWLEDGMENTS}

An wex inn

REFERENCES

वाग्या

4
Contacts: krubiosandoval@marum.de @KarlaRubioSand

\title{
UIIIII \\ TERRESTRIAL AND AQUATIC SNAILS: INSIGHTS INTO CLIMATE CHANGE IN OMAN FROM THE EARLY BRONZE AGE TO THE PRESENT \\
 Wheurn Whuthose Wentiel Ormury

}

\section*{introstuction}

 imvire th 30 -ilicy

ETvi=2

\section*{Interpantation}

\begin{tabular}{|l|l|l|l|l|l|l|}
SPIXIANA & Supplement 30 B & WCM 2022 & HET & 27 & München, September 2022 & ISSN 0177-7424 \\
\hline
\end{tabular}

\section*{Formalin-fixed specimens, not a fruitless endeavour? - method-based \\ discussion on formalin-fixed extraction and sequencing \\ Lynn J. Bonomo*1,2, Athena W. Lam \({ }^{1,3}\), Matthew H. Van Dam \({ }^{1,3}\), James B. Henderson \({ }^{1}\), and Terrence M. Gosliner² \({ }^{*}\) Presenting author, \({ }^{1}\) Center for Comparative Genomics, \({ }^{2}\) Department of Invertebrate Zoology and Geology, \({ }^{3}\) Department of Entomology | California Academy of Sciences}

\section*{Abstract}

Formalin fixation was a standard preservation method for museum specimens necessitated by the need for high-quality morphological preservation. This preservation method was especially common for soft-bodied marine invertebrates, particularly nudibranchs, into the 1990s. Unfortunately, formalin causes many issues for molecular work as it causes crosslinking, fragmenting, and modifying bases of DNA. These older specimens are often the only available specimen for a species and obtaining molecular data from them is essential for resolving phylogenetic questions. Using a formalin extraction method developed by ichthyologists, we extracted DNA from two formalin-fixed nudibranchs and performed lowcoverage whole-genome sequencing. Library construction was performed using both standard (double-stranded) and single-stranded DNA methods. This poster presents new methods and complications of this protocol and aids in discussing new techniques or methods to improve results.

\section*{Original Description of Goniobranchus tinctorius (Rüppell \& Leukhart 1830)}

\section*{Original German:}

Doris tinctoria
Der milchweifse Körper ist, besonders auf der Mitte des gewölbten Rückens, mit sehr seinen blutrothen Adernetzen, in denen sich ein Paar Reihen eben so gefärbter Puncte befinden, gezeichnet. Der Rand des Mantels ist schwefelgelb gesäumt. Es ragt derselbe nur wenig über den Fuss vor. Auch die obere nach hinten freie Fläche des Fufses ist mit unregelmäfsigen rothen Flecken colorirt. Die 19 pyramidenförmigen, gefiederten Kiemen können völlig in den Mantel zurückgezogen und von demselben verdeckt werden. - Die Individuen dieser Dorisart haben die Eigenheit, selbst noch nach einem zehnmaligen Wechsel des Weingeistes, diesen braunschwarz zu färben.
Länge 2 Zoll. - Von den in Weingeist befindlichen Exemplaren ist das gröfste 8, das kleinste 5 Linien lang. - Bei Tor im März gefunden.
English translation:
The milk-white body, especially on the middle of the arched back, is marked with its blood-red vein nets (?), in which there are a couple of rows of dots just as colored. The edge of the coat (mantel) is hemmed in sulfur-yellow. It protrudes little over the foot. The upper surface of the foot, which is free to the rear, is also colored with irregular red spots. The 19 pyramid-shaped, feathered Gills can be completely withdrawn into the coat (mantel) and covered by it. The individuals of this Doris species have the peculiarity of coloring this brown-black even after changing the spirit of the wine ten times.
Length 2 inches. - The largest of the specimens in wine spirits is 8 , the smallest 5 lines long. - Found at Tor in March.

- Goniobranchus tinctorius is the first described red-reticulate
- Important to clarifying the red-reticulate species complex

Has not been collected in years from the Red Sea
- Closest specimen at CASIZ was collected by John L. Earle from Arabian Sea, Oman from Nov. 1993

Red Sea usually has distinct species of nudibranchs
- Supported by molecular and morphological work
- Examples are seen in genera, such as Chromodoris, Halgerda, Asteronotus

Figure 1. Pictures of live specimen of \(G\). tinctorius collected in Oman CASIZ 097438
Figure 2. Drawing of Goniobranchus tinctorius from Rüppell \& Leukhart (1830)

\section*{Methods}

Extractions:
Protocol from Gould et al. 2021 (modified from Hykin et al., 2015 and Ruane \& Austin, 2017)
- Up to a 72-hour buffer soak using GTE buffer, ATL buffer, Ethanol, and proteinase K. Combine with a shaking heat block.
- Used the Qiagen QIAamp DNA Micro Extraction

Sequencing:
- Tested both dsDNA (NEBnext Ultra II DNA, with slight modifications to adapt for ancient DNA) \& ssDNA (xGen ssDNA \& Low-Input DNA Library Preparation) library prep methods
- Libraries were sequenced at 10x coverage on a NovaSeq System, Paired-end 150
- Sequencing done through NovoSeq partial lane at MedGenome (San Francisco, CA)

Analyses:
- Python coding
- Geneious map to reference function - reference sequence was cytochrome oxidase subunit I (COI) for Goniobranchus cf. reticulatus (CASIZ 191022A)

\section*{Results \& Conclusion}

The extraction methods produced 169-698.5 ng of DNA total (\(\mathrm{ng} / \mu \mathrm{l} \times\) total \(\mu\)) from a quarter of the nudibranch. Both library prep methods yielded libraries that were able to be sequenced with good bioanalyzer traces, average fragment lengths that were smaller (\(<100 \mathrm{bp}\)), which is expected for such starting material. The expected number of reads were produced, but a high percentage matches bacterial sequences. We were unable to align the filtered reads to the Aplysia or mitochondrial genomes or COI sequences produced from the same or closely related species.

Conclusion: We successfully identified extraction and DNA library preparation methods that might be appropriate for formalin preserved samples. However, bacterial contamination during the preservation and/or storage of samples overwhelmed the data produced. Further work will be done, focusing on decontamination methods both physically and bioinformatically.

\section*{CHOOSE YOUR OCEAN: SPECIATION AND EVOLUTION OF BOREAL AND ARCTIC CORYPHELLA (HETEROBRANCHIA: NUDIBRANCHIA)}

IRINA EKIMOVA¹, ÁNGEL VALDÉS², MANUEL MALAQUIAS, CESSA RAUCH \({ }^{3}\), ANTON CHICHVARKHIN \({ }^{4}\)
 ANNA MIKHLINA \({ }^{1}\), TATIANA ANTOKHINA \({ }^{5}\) AND DIMITRY SCHEPETOV \({ }^{1}\)
Introduction
The species delineation is particularly acute in boreal seas,
which are often inhabited by species with broad geographic
ranges and high degrees of intraspecific morphological and
molecular diversity. Environmental conditions in boreal and
Arctic regions significantly changed multiple times in recent
past, promoting the formation of geographic barriers and
leading to allopatric speciation events. Unlike with sympatric
species, no separation in ecology happens, and truly cryptic
species can be formed with overlapping morphological
variation, but significantly distant genetically.

\section*{Material \& Methods} In this study we studied the systematics and phylogenetic
relationships within wide-spread genus Coryphella (Heterobranchia: Nudibranchia: Cladobranchia). For this purpose, we used a set of 5 standard mitochondrial and nuclear markers: COI, 16S, \(\mathrm{H} 3,28 \mathrm{~S}\) and 185 and a large variety of species delimitation (ABGD, GMYC, bPTP), phylogenetic and phylogeographic methods (i.e., population analysis; ancestral area reconstruction). The morphological analysis included standard morpho-anatomical examination Species delimitation results \(\quad \begin{gathered}\text { Revised IDs } \\ 2 \text { new species }\end{gathered} \quad \begin{gathered}\text { Radular characters } \\ \text { (based on original and } \\ \text { literature data) }\end{gathered}\)

Phylogeography

This study was supported by Russian Science Foundation grant \#20-74-10012.
Corresponding author email: irenekimova@gmail.com

\title{
New data on taxonomy of phyllidifd nudibranchs (Heterobranchia: Phyllididae) and biodiversity in Southern Vietnam
}

\author{
Jana V. Indriksone \({ }^{1}\), Yury V. Deart \({ }^{2}\), Tatiana I. Antokhina \({ }^{2}\), Dimitry M. Shepetov \({ }^{1}\), Irina A. Ekimova \({ }^{1}\)
} \({ }^{1}\) Lomonosov Moscow State University, Moscow, Russia. \({ }^{2}\) A.N. Severtzov Institute of Ecology and Evolution RAS, Moscow, Russia. Nudibranchs of the family Phyllididae stand apart from all other nudibranch In the present study, we observed the diversity of Phyllidiidae in families as they demonstrate several unique traits: lack of radula and labial Southern Vietnam using an integrative approach included cuticle, lack of gills, the presence of adaptive gills and partly external traditional morphological (anatomical research, SEM) and digestion. Phyllidiidae has always been a complicated group for taxonomical modern molecular phylogenetic methods. In the latter case two studies. Due to lack of the radula the species identification is much more mitochondrial (COI and 16S rRNA) and two nuclear (histone H3 difficult than in other nudibranch families. Despite some several recent and 28 S rRNA) markers were studied. The material was work using molecular methods have been published, the taxonomy of the collected in 2016-2021 from Nha Trang Bay and Spratly Islands family is a challenge due to a great number of true cryptic species.
in Vietnam waters using SCUBA diving and snorkeling.
Maximum Likelihood
tree of Phyllididae
based on the dataset
of partial co1, 16S,
28S and H3
sequences.
Phyllidiella

Each genus within the Phyllidiidae was recovered monophyletic. The exceptions are Phyllidia larryi and Phyllidiopsis cardinalis demonstrating sister relationships to other Phyllidiidae likely due to limited molecular data for these species. Genera morphologically differ from each other in the anatomy of digestive system (digestive gland and pharynx specifically)

As Phyllididae are still pourly studied, this is the first time nuclear markers were included in molecular analysis.
Maximum Likelihood tree of Phyllidiidae based on the dataset of partial CO1, 16S, 28 S and H3 sequences.

The Phyllidiella pustulosa species complex currently appears to be splitted into 9 clades (bold on the tree). In our material 4 of them are present. They all are highly divergent in coloration. Anatomically they show no differences. They vary only in secondary metabolites,
what was shown in Papu et al. (2022)

Phyllidia
ocellata Cuvier,
1804

22.4 - Phyllidia sp. nov. Our specimen differs from others both in color and molecular data. Unfortunately, only a piece for molecular studies was collected, so its anatomy cannot be studied.

Bergh, 1869
 coelestis Bergh, 1905

Phyllidiopsis krempfi ruvot-Fo
1957

correspondence: indriksonne@gmail.com

\section*{Phaedusinae versus Clausilinae and Alopiinae}
- similarities and differences in the structure of the reproductive system

Tomasz K. Maltz¹, Izabela Jędrzejowska \({ }^{2}\), Anna Sulikowska-Drozd \({ }^{3}\)
\({ }^{1}\) Museum of Natural History, University of Wrocław, Poland
\({ }^{2}\) Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Poland
\({ }^{3}\) Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Poland

\title{
Seasonal Differences in the Distribution, Size, and Population Density of the Nudibranch Nanuca occidentalis
}

Julia R. Piper, Erika N. Molina, Samantha S. Schlegel, Louis J. Ambrosio, Daniella Gutierrez-Andrade, and Michael L. Middlebrooks Department of Biology, The University of Tampa, Tampa, United States

\footnotetext{
\section*{Introduction}

Despite their fascinating biology heterobranch sea slugs are understudied organisms and for most species' basic information regarding life cycle and history as well as seasonal and geographic distribution and are not documented¹.
egolid nudibranchs are carnivorous sea slugs that feed on a variety of prey organisms including many Cnidarians Often their prey provide not only food, but habitat and shelter for the nudibranch as well \({ }^{2}\)
Nanuca occidentalis, previously Dondice occidentalis \({ }^{3}\) (Figure 1), is an aeolid nudibranch native to the Gulf of Mexico and Naribbean Sea 4,5.
Nanuca occidentalis feeds on hydroids in the genus Eudendrium, which form large ex habitat for a variety of small organisms, causing them to be local biodiversity hotspots \({ }^{6}\).
By studying colonies of Eudendrium carneum and recording sea slug species presence, this study aims to provide data on the seasonal abundance of sea slugs as well as additional information on the seasonal variation of size and density in \(N\). occidentalis.
}

collection sight located near the Skyway Bridge
Within the first week of each month from June 2021 to May 2022, four colonies of the hydroid \(E\). carneum were collected by snorkel from the Skyway Bridge in St. Petersburg, FI (Figure 2). Dissection microscopes were used to thoroughly search each colony for sea slugs. Discovered sea slugs were identified to species and measured for length by photographing them in an elongated position next to a metric ruler. These photos were then digitally measured using ImageJ software. Once all sea slugs had been removed, the hydroid colony was dried in a drying oven. This dry weight was then used to calculate population density for \(N\). occidentalis.

\section*{Results}

Throughout the year-long study a total of 638 sea slugs were found across 15 different species; 420 of these slugs were \(N\). occidentalis.
During the study, individuals from the following taxonomic groups were found: Cladobranch Nudibranchs, Sacoglossa, Cephalaspidea, and Aplysiida (Table 1). 2021. Nanuca occidentalis were present every month and Doto divae (Figure 3) were present in ten of the months.
The lowest species diversity, with two documented species, was seen in the months of September 2021, October 2021, February 2022, and April 2022 (Figure 4).

The largest quantity and highest density of N. occidentalis was found in July 2021 with 2.919 individuals/g dry wt. hydroid, and the smallest/lowest found in February 2022 with 0.126 individuals/g dry wt. hydroid (Figure 5).
The largest average size of \(N\). occidentalis was recorded in February 2022 \((16.68 \mathrm{~mm})\) and the smallest in July \(2021(4.22 \mathrm{~mm})\) (Figure 6).

Figure 6: Scatter plot of the size of each individual Nanuca occidentalis in millimeters per month ranging from June 2021 to May 2022. The connected line shows mean size per month

\section*{Discussion}
- This study has showcased the dynamic, variable habitat provided by E. carneum. This colonial hydroid hosted a variety of heterobranch sea slugs by acting as shelter; and additionally served as a food source to some nudibranchs.
Resident species, \(N\). occidentalis and \(D\). divae, were found each month feeding on the host hydroid. Other, more transient species found on \(E\). carneum, were suspected to have been feeding on other organisms growing on the colonial hydroids; such as epiphytic filamentous or microalgae. The fluctuations in species richness may be due to each sea slug's life cycle or food availability. These two factors, a combination of them, or unknown factors are responsible for these fluctuations.
In the summer months, the density of \(N\). occidentalis was the highest; however, these individuals also had the lowest average size. This could be due to recent spawning or recruitment events that led to an abundance of juvenile slugs. The opposite trend was observed in late winter, suggesting that few slugs survive into late adulthood. This corresponds to a type III survival curve common in mollusks. The spring months show an increase in the density of \(N\). occidentalis possibly indicating the early stages of a spawning season.
The observed sea slug decline seen seasonally could be due to senescence, predation, seasonal water temperature changes, or a variety of unexplored factors. Certainty for the causation of this experiments observed seasonal pattern requires further research.

\title{
Does Colour Count? \\ Morphological analysis and phylogeny of the genus Phyllidia Cuvier, 1797
}

\section*{Lina M. Raubold \({ }^{1}\), Adelfia Papu², Heike Wägele¹}

Centre of Molecular Biodiversity, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany \({ }^{2}\) Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, 95115 Manado, Indonesia Email: s6liraub@uni-bonn.de

\section*{Introduction}

The genus Phyllidia Cuvier, 1797 (Mollusca, Gastropoda, Nudibranchia) is the largest and most widespread genus within the Phyllididae Rafinesque, 1814. While these colourful and conspicuous nudibranchs have been studied for 225 years, the taxonomic order within this genus is still a matter of debate. As several species of the genus Phyllidia are suspect to pharmaceutical studies, evaluating their toxins for pharmacological usability, knowledge of the evolutionary relationships within this genus and a coherent taxonomy of its species is crucial.

\section*{Material \& Methods}

Dissections, histological examinations and an extensive literature review of the genus were conducted resulting in an extensive set of putatively parsimony-informative characters, first phylogenetic analyses (using TNT) and a taxonomic revision.

\section*{Conclusion}

Colour patterns need to be accompanied by thorough morphological and anatomical information in species descriptions and phylogenetic analyses.
The ventral position of the anus, used to distinguish between the genera Phyllidia and Fryeria Gray, 1853 (synonymized with Phyllidia) is seemingly polyphyletic.

Müllerian mimicry rings might be present within this genus. One example might be the 'ocellata-clade' including Phyllidia ocellata, Phyllidia undula, Phyllidia multituberculata, Phyllidia cf. babai and the synonymized Phyllidia ocellata japonica form.
This morphological analysis still awaits a similar molecular analysis of phylogenetic relationships within this genus.

\section*{First phylogenies of the genus Phyllidia}
.. based on morphological data give us a first glance of possible evolutionary relationships within this genus:
Phyllidia larryi and Phyllidia flava may represent the most ancestral state within this genus.
A relatively clear distinction is present between forms with minute or large nota tubercles.
Possible mimicry rings are resolved as either monophyletic or polyphyletic based on the inclusion or exclusion of colour-based characters.
 and

\section*{Phyllidia ocellata Cuvier, 1804}

Phyllidia undula Yonow, 1986

Phyllidia ocellata japonica form

Synonymized species like Phyllidia japonica Baba, 1937 should be e-evaluated taking mimicry into account.

\section*{Spot the difference}

The species depicted here are very often identified or published as Phyllidia ocellata Cuvier, 1804. However, validity of \(P\). cf. babai as a separate species has been confirmed by molecular analyses by Papu et al., 2022. We cannot exclude that the other species here are also still valid and they should therefore not be synonymized (see Brunckhorst, 1993 or Gosliner et al., 2015). They would exhibit a nice example of Müllerian Mimicry.

Parsimony-informative characters
Ventral colouration
Shyllidia cf. babai
- Oral tentacles
- Colouration of foot and gills - Black ventral markings

- Morphology of the pharyngeal bulb - Morphology of the genital apparatus - Morphology of the penial spines
\(\int_{\substack{\text { To } \\ \text { is vaitite ibile formation } \\ \text { reseliable }}}^{\substack{\text { lits }}}\)
\(\rightarrow\) biractron the beses
Fig. 5 scheme of a penial spine
of Phylidio a
variciosa
with
of Phylidia varicoss with
putatively parsimony-infort
putatively parsimon.
tive measurements.

Rhinophores
Number of rhinophoral lamellae
Tubercle morphology
- Size
- Arrangement
- Shape

Colour of large notal tubercles

Phylildia varcoso, Phylidia s.
elegans (from lett to onght).

We are grateful for the generous financial support of Unitas Malacolog
Helber and Avivit Fischler for the provision of photographs for this poster.
artdatabanken naturhistoriska museum

\title{
A new illustrated fauna for the Swedish species of Eupulmonata, Hygrophila and Pylopulmonata
}

\author{
Ted von Proschwitz \({ }^{1,2}\), Kennet Lundin \({ }^{1,2}\), Jonas Roth \({ }^{3}\) \& Ulf Bjelke \({ }^{4}\)
}

A Swedish fauna for the Eupulmonata (126 species), Hygrophila (34 species) and Pylopulmonata (33 species) is in production. It will soon be published as a volume in the series The Encyclopedia of the Swedish Flora and Fauna (Nationalnyckeln), produced by the SLU Swedish Species Information Centre (SLU Artdatabanken).

This will be the first complete fauna for Swedish land and freshwater gastropoda for over a hundred years. The chapter on marine pylopulmonates will be the first presentation of this group ever published for the country.

The volume contains detailed descriptions of the morphology, variation, and ecology of all species as well as distribution maps (for the terrestrial and freshwater species), and photos of all species from several angels. Beside photos of shells, more than \(90 \%\) of the species in Eupulmonata and Hygrophila are covered with live photographs. For Pylopulmonata that figure is \(40 \%\). In appropriate cases also anatomical details are described and illustrated. In the introductory sections the systematics, anatomy, ecology, and reproduction etc. are treated. Determination keys for adult specimens are presented in Swedish and English. Limnic and terrestrial species of the Neritimorpha and Caenogastropoda (13 species in total) are included in an appendix. Hothouse species and temporary introductions are briefly mentioned.

Gyraulus acronicus. A common species in streams,
rivers and lakes in the northern parts of the country.

Example of the distribution maps. Cochlicopa nitens.

Gothenburg Natural History Museum, Box 7283, \({ }^{2}\) Gothenburg Global Biodiversity Centre, University of
\({ }^{3}\) Edsberga, Solliden, SE-58593, Linköping, Sweden
Gothenburg Natural History Museum
SE--40235 Gothenburg, Sweden
Email: ted...proschwitz@vgregion.se
2Gothenburg Global Biodiversity Centre, University of
Gothenburg, P. O. Box 461, SE-40530 Gothenburg, Sweden

Vertigo lillieborgi. A hygrophilous species,
oligo-mesotrophic fen and shore habitats.

4Swedish Species Information Centre, Swedish
University of Agricultural Sciences, P. O. Box 7007, SE-75007 Uppsala, Sweden

\section*{Coupling between biomineral morphology and Sr/Ca of Arctica islandica (Bivalvia) JSPS}

Cornélia Brosset \({ }^{1}\), Nils Höche \({ }^{1}\), Kotaro Shirai \({ }^{2}\), Kozue Nishida \({ }^{3}\), Regina Mertz-Kraus \({ }^{1}\), Bernd R. Schöne \({ }^{1}\)
\({ }^{1}\) Institut of Geosciences, Univesity of Mainz, Mainz, Gemany

\section*{INTRODUCTION}

Shells of marine bivalves as high-resolution paleoclimate archives offer outstanding potential for environmental reconstruction to understand past and future climate dynamics [1-3]. Yet, well-accepted and reliable proxies are limited (e.g., \(\delta^{18} \mathrm{O}\) [4], growth rate [5]). Temperature reconstruction based on marine bivalve shell \(\mathrm{Sr} / \mathrm{Ca}\) remains challenging, although this method is routinely used for other biogenic carbonates (e.g., corals [6]). Specifically, the incorporation of strontium in the shell of Arctica islandica is regulated by vital and kinetic effects, and linked, directly or indirectly, to the shell microstructure [7].

Hypothesis: Sea surface temperature (SST) from NE Iceland (Fig. 1) can be reconstructed from shell Sr/Ca ratios of \(A\) islandica \(\mathrm{Sr} / \mathrm{Ca}\) ratios of \(A\). islandica after correction for microstructure and grest

\section*{MATERIAL \& METHODS}
- Cross-sections of juvenile A. islandica shells: Outer and inner shell layers (OSL, ISL) are separated by the myostracum. OSL is subdivided into an outer and inner portion (oOSL, iOSL). Homogenous microstructure (HOM) dominates in the oOSL and crossed-acicular microstructure (CA) in the IOSL and hinge.
Chemical analysis: Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS). - Microstructural analysis: Scanning Electron Microscopy (SEM) images analysis and morphometry of each biomineral unit (BMU) from both microstructure types. - Shell growth and microstructural bias analyzed and mathematically removed from the \(\mathrm{Sr} / \mathrm{Ca}\) signal: Assessment of the \(\mathrm{Sr} / \mathrm{Ca}\) to SST relationship.
 positions in the hinge. (e) Schematic laser spot (diameter \(=60 \mu \mathrm{~m}\)
and SEM image (square of \(35 \mu \mathrm{~m}\)). (f) Microstructure examples: HOM and \(C A\) in the ventral margin, and \(C A\) in the hinge.

\(=\)

\section*{RESULTS}

Fig. 3. Average shell Sr/Ca and BMU area chronologies of staudied A. is/andica
specimens. Magenta circles \(=\) weekly data from the oOSL (HOM) of the ventral margin; green circles \(=\) weekly data from the iOSL (CA) of the ventral margin; black squarges \(=\) monthly data from the hinge (CA). Vertical gray yarss a annual growth' lines. (a) A. Average
Sr/Ca chronologies of oosL, OSSL and hinge. (b) Average BMU area chronologies of
OOSL, iOSL and hinge.
The seasonality of \(\mathrm{Sr} / \mathrm{Ca}\) and BMU area suggested an external forcing of these parameters (Fig. 3). In the ventral margin, \(\mathrm{Sr} / \mathrm{Ca}\) levels were different in the oOSL (HOM) than in the iOSL (CA) whereas the respective BMU sizes were similar. In addition, a BMU area dissimilarity in the same microstructure type (CA) for different shell portions (ventral margin and hinge) suggested that additional processes were responsible for the apparent Sr/Ca signal.

Fig. 4. Relationship of Sr/Ca with growth rate and BMU area of studied \(A\). is/andica
specimens. Color coding as in Fig. 3 Regression curves are depicted in same color as specimens. color coder as in fig. 3. Regression curves are depicted in same color as
data of respective shell portion. Black dashed lines represent linear regression model of entire OSL (oOSL + iOSL) dataset. (a) Sr/Ca and growth rate relationship in the ventra
margin. (b) Sr/Ca and BMU area relationship in the oOSL, iOSL and hinge.

The shell layer-specific model of the relationship between \(\mathrm{Sr} / \mathrm{Ca}\) and the shell growth rate provided a better fit than the general model for the ventral margin (Fig. 4a). A similar result was obtained for the \(\mathrm{Sr} / \mathrm{Ca}\) vs BMU area: A negative correlation is observed for both oOSL and IOSL with the layer-specific model, where and IOSL wh the layer-specific mode, where the general models (ventral margin and hinge) did not provide strong correlations (Fig. 4b)

Fig. 5. Relationships between shell Sr/Ca data of A. is/andica and SST. Color
coding as in Fig. 4. (a) Undetrended shell Sr/Ca of the oOSL. iOSL and hinge coding as in Fig. 4. (a) Undetrended shell Sr/Ca of the oOSL, iOSL and hinge.
(b) Double-detrended SrICa chronologies of the ventral margin (shell layer-
specific growth rate and specific growth rate and BMU area detrending; 'd' prefix = detrended).
\(\mathrm{Sr} / \mathrm{Ca}\) is weakly positively correlated to SST in both sublayers of the OSL, with a stronger correlation in the IOSL, whereas the linear regression was not significant in the hinge (Fig. 5a). The bias introduced by growth rate and shell microstructure was mathematically removed from the \(\mathrm{Sr} / \mathrm{Ca}\) signals, i.e., detrending, using layer-specific models for oOSL and iOSL of the ventral margin separately. The residuals, i.e., detrended \(\mathrm{Sr} / \mathrm{Ca}\) ratios (\(\mathrm{dSr} / \mathrm{Ca}_{\text {oosl }}\) and \(\mathrm{dSr} / \mathrm{Ca}_{\text {iosl }}\)), were more strongly correlated to SST. Additionally, the level difference between the sublayers of the OSL was removed (Fig. 5b).

\section*{DISCUSSION}
I. The influence of shell growth rate on \(\mathrm{Sr} / \mathrm{Ca}\) \(\mathrm{Sr} / \mathrm{Ca}\) ratios of the OSL sublayers were weakly linked to the shell growth rate. However, this relationship differed between the GOSL and oOSL. This suggests that the direct relationship between \(\mathrm{Sr} / \mathrm{Ca}\) and the shell growth rate is ambiguous, or that other factors had a larger impact.
II. Relationship between \(\mathrm{Sr} / \mathrm{Ca}\) and shell microstructure The robustness of the negative correlation between \(\mathrm{Sr} / \mathrm{Ca}\) and BMU size differed between the two sublayers of the OSL of the ventral margin, suggesting an indirect link between the two parameters.

The incorporation of strontium into the shell is under strong biological control [9], and the energetic cost of building BMUs potentially differs between different types of microstructure. Simpler blocks (e.g., at the annual growth lines, or in HOM) would be less demanding and the different BMU shape, and its idiomorphy, could facilitate the incorporation of \(\mathrm{Sr}^{2+}\) ions resulting in higher strontium content in the BMUs more affected by crystal lattice defects (e.g., in CA) [10]

Organic components could, indirectly, play a role in these microstructural differences in \(\mathrm{Sr} / \mathrm{Ca}\) by promoting the crystal nucleation and regulating the presence of crystal defects [11]. Organic matrices could also have a direct impact on the \(\mathrm{Sr} / \mathrm{Ca}\) by enveloping BMUs in strontium-rich organic components [12].
III. Temperature control of shell \(\mathrm{Sr} / \mathrm{Ca}\) ?

Sr/Ca was positively correlated to the temperature, even after detrending for microstructure and growth rate related effects. Other studies have found similar [13] and opposite [14] correlations between SST and \(\mathrm{Sr} / \mathrm{Ca}\).

This positive correlation, reinforced by the detrending process, is opposite to the results of inorganic aragonite precipitation experiments [15] (but in agreement with thermodynamics expectations). This suggests that the result obtained in this study could be representative of a causal relationship between the SST and the \(\mathrm{Sr} / \mathrm{Ca}\) signal, but is also linked to strong vital effects.

\section*{CONCLUSIONS}

Currently, \(\mathrm{Sr} / \mathrm{Ca}\) values of \(A\). islandica measured between annual growth lines cannot be used to reconstruct water temperature. with thermodynamics predictions, but contradicts findings in some other bivalve species, scleratinians corals and inorganic aragonite (which all show a negative correlation) A detailed characterization of the shell microstructure (eg., shape, habits), will most likely remain an integral part of subsequent attempts to reconstruct temperature from shell \(\mathrm{Sr} / \mathrm{Ca}\). An ultra-high-resolution characterization of shell organics may help to understand the Sr distribution patterns in the shells.

ACKNOWLEDGEMENTS
We thank the German Research Foundation (DFG) and the Japan Society for the Promotion of Science (JSPS) under the Joint Research Projects-LEAD with the DFG (JRPSS-LEAD with DFG) for the
funding of this proiect.

\section*{REFERENCES}

Fossilized organic periostracum from the Dinosaur era:
Ney insights itho phylogeny and palacoenvironmental reconstructions in Palacoheterodonta

B ECO 29
- 1. Background

The extinct bivalve 'Trigonioidoidea' (Palaeoheterodonta), which emerged in the Middle Jurassic, possess combined features of both orders marine Trigoniida and freshwater Unioinida. Due to frequent convergent evolution of shell macro-morphology, the taxonomic position of 'Trigonioidoidea' has been contentious in past studies. In the current systematics, the superfamily is classified in the order Trigoniida, based on similarities in rib morphology and the position of shell adductive scars \({ }^{1}\), but its placement should be reconsidered with microstructural characters. 2. Methods and materials

In this study, the periostracal microstructure of 20 species from all seven families of the Recent Palaeoheterodonta (Unionidae, Margeritiferidae, Etheriidae, Hyriidae, Iridinidae and Mycetopodidae) and six species from all five extinct 'trigonioidoidid' families (Trigonioididae, 'Nakamuranaiadidae', 'Nippononaiidae', 'Plicatounionidae' and 'Pseudohyriidae'), as well as four Cretaceous trigonids were compared with FE-SEM and CSLM.

\(\qquad\)
 F. Nodularia douglasiae (Unionidae), G-I. Nagdongia soni ('Nakamuranaiadidae'), A, C, D, G. Cross-sectional view in growth axis,
B, E, F, H, I. Internal view of decalcificated periostraca, C. Nitrogen distribution (frame A), F, I. Arrows indicate organic mass. B, E, F, H, I. Internal view of decalcificated periostraca, C. Nitrogen distribution (frame A), F, I. Arrows indicate organic mass.

Simple to more three-dimensionally complex honeycomb-like periostraca

5. Graphical summary

The honeycomb-like periostracum may be an evolutionarily conserved trait in the Unionida. This microstructure probably function to prevent the detachment of the periostracum in rapidly shell dissolving freshwater environment

\section*{6. References}

1 Stiller \& Chen (2019) Acta Palaeontologica Sinica, 58(1): 92-113 2 Graf \& Cummings (2006). Zoo. Jour. Lin. Soc., 148(3), 343-394.
3 Checa et al. (2014) PLoS One, 9(2). e90033.
- Acknowledgements

This research was substantially supported by Dr Kawori Tanaka (Keio University) in FE-SEM observations. We would like to express
our deepest gratitude to Emer. Prof. Kazushige Tanabe (The University of Tokyo) for providing fossil samples. This work was our deepest gratitude to Emer. Prof. Kazushige Tanabe (The University of Tokyo) for providing fossil samples. This work was
supported by the Research Grant of Unitas Malacologica, Reseach Institute of Marine Invertebrate, and Tokyo Geographical

Vinious unlverciteton

\title{
Comparison of the effectiveness of barrier control measures for invasive slugs
}
A. Jucevičiūtè \({ }^{1}\) \& G. Skujienè \({ }^{1}\)

Department of Zoology, Institute of Bioscience, Life Science Center, Vilnius University, Vilnius, Lithuania

\section*{Introduction}

Arion vulgaris (Moquin-Tandon, 1855) is a common pest slug capable of causing high damage to agricultural and horticultural plants.
Conventional chemical control agents can pose risks to humans, animals and the environment due to their inherent properties and associated uses

\section*{The aim}

The task of this research was to determine and compare the effectiveness of environmentally friendly barrier measures (copper strips, zinc tin-sheet metal and "Schnexagon" paint)

\section*{Materials and methods}

Slugs were counted and collected in 10 fields using J. Valovirta (1996) the checkerboard linear transect method (100 \(\mathrm{m}^{2}\)) (Fig. 1).

Fig. 1. Scheme of a checkerboard linear transect \(100 \mathrm{~m}^{2}\) (according to J. Valovirta, 1996)

\section*{Experiments (Fig. 2):}
I. Zinc tin-plate enclosures + anti-slugs coating (Schnexagon) or copper tape or control fence without application. 5 enclosures for each group \(\times 20\) slugs.
II. Plastic pot + anti-slugs coating or copper tape or control pot without application. 10 pots with lettuce plant and slice of squash for each group.
III. Wooden enclosure + anti-slugs coating or copper tape or control without application. 2 enclosures with lettuce plant and slice of squash for each group.

Fig. 2. Design of research: I - left; II - center; III - right. Photo by A. Jucevičiūté

\section*{Results \\ Abundance in VU Botanical Garden}
\(\sim 12\) times more slugs were found in the Vingis section; more smaller slugs.

Table 1. The results of the abundance of Arion vulgaris Table 1. The results of the abundance of Arion vulgaris sections of VU Botanic Garden.

Fig. 5. Comparison of the average lettuce leaves and zucchini damage in different wooden barrieer tests (\(\pm\) SE)

\section*{Conclusions}
1. Without the use of special measures to control invasive slugs, it is impossible to control the amount of slugs by simply picking and destroying visible slugs. 12 times more slugs were found in VU Botanical Garden in Vingis than in VU Botanical Garden in Kairenai, where chemical plant protection measures are additionally applied.
2. In the Lithuanian climate, the effectiveness of SXG lasts not 8 weeks (as stated in the instructions), but 3 weeks, so after that the application needs to be renewed again.
3. Of the three different barrier control measures tested, it was confirmed that the most effective barrier protection measure is SXG (72.065\%), slightly less effective copper strip \((57.741 \%)\), and the effectiveness of galvanized sheet was not confirmed at all (32.263\%).

6 pav. Arion vulgaris (Moquin-Tandon, 1855).
Photo by A. Jucevicíūtè

\section*{Abstract}

The aim of the work is to determine and compare the effectiveness of barrier measures for slug control (SXG, copper strip and galvanized sheet metal) in Lithuania, in field conditions. The analysis of the abundance of invasive slugs Arion vulgaris (Moquin-Tandon, 1855) in the Kairenai and Vingis sections of the Vilnius University Botanical Garden shows that there are 12 times more of these slugs in the study area in Vingis section than in Kairenai section. The Analysis of the different barriers showed different efficiencies. SXG was the most efficient \((72,065 \%)\), copper strip was less effective \((57,741 \%)\), and the efficiency of galvanized sheet metal was not confirmed at all (32,263\%).

\section*{Literature}

Balčiauskas L., Butkus R., Dagys M., Gudžinskas Z., Šidagytė E., Vaitonis G., Virbickas T., Žalneravičius E. 2017. Invazinés rūšys Lietuvoje.
Dörler D., Kropf M., Laaha G., Zaller1 J. G. 2018. Occurrence of the invasive Spanish slug in gardens: can a citizen science approach help deciphering underlying factors? BMC Ecology, 18: 23 https://doi.org/10.1186/s12898-018-0179-7
Howlett S. A. 2012. Terrestrial slug problems: classical biological control and beyond. CAB Reviews. doi: 10.1079/PAVSNNR20127051
Luzitaninis arionas (Arion /usitanicus auct., non j. Mabille) https://am.IIv.It/l/veiklos-sritys-1/gamtos-apsauga/invazines-rusys/porubrikes-informacija-apie-invazines-rusis/luzitaninis-arionas-arion-lusitanicus-
auct-non-j-mabile (zureta. 2022.01.07, 21.35)
2013. The impacts of invasive alien species in Europe. Doi:10.2800/65864

Slotsbo, S. 2012. Ecophysiology and life history of the slug, Arion lusitanicus. PhD thesis. Aarhus University, Department of Agroecology, Denmark. 80 pp.

\title{
The Tomlin archive... bridging science and history
}

John Read le Brockton Tomlin (1864-1954) was one of the most highly respected British malacologists of his time and in 1955 his extensive shell collection was bequeathed to Amgueddfa Cymru - Museum Wales as the Melvill-Tomlin collection.

Alongside the collection and library was a unique archive of documents curated by Tomlin to represent the breadth of his correspondents, but also to record handwriting examples and signatures of other important malacologists.

Tomlin described it as his malacological autograph collection and it contains nearly 1500 documents dating from 1762 to 1953.

\section*{The Contents}

\section*{SCIENCE \& EXPLORATION}
- Shell collecting \& expeditions
- Identifying specimens \& discussing differences of opinion
- Finding \& describing new species
- Describing mollusc habitats
- Discussing, writing \& requesting malacological publications
- Sending hand-drawn illustrations of shells \& anatomy

\section*{COMMUNITY}
- Arranging shell meetings \& collection viewings
- Swapping, donating \& selling specimens

Discussing collections, collectors \& type material
- Sharing portraits, handwriting \& autograph examples

Archives such as these form a bridge between social history and science, which is a different route into engagement with our natural science collections.

It offers the opportunity to investigate the colonial history of collecting and the communication of women in science during this period.

\section*{The Insights}

\section*{FRIENDSHIP}
- Gestures of kindness, support \& condolence
- Sending festive greetings
- Invitations to homes
- Sending thanks \& appreciation
Brntin it-prine"

\section*{SHARING}
- Stories from holidays, voyages \& expeditions
- Portraits \& photographs of personal experiences
- Personal \& family illnesses
- Hardships through war \& adversity
- Sharing opinions of others in the field

\section*{CULTURE}
- Sharing differences in cultures, language, environment \& geography
- Highlighting women malacologists
- Insights into colonial Britain

In 2015 we devised a volunteer transcription programme to make the archive accessible. We worked with 3 dedicated volunteers between 2015-2018 and a further 3 from 2019-2022.

They transcribed each of the letters, explored the characters involved, interpreted the contents, and highlighted stories of historical and social interest.

Our Volunteers

The volunteers came from a mixture of science, history and language backgrounds which have all brought invaluable input to the project.

The linguistic skills have been a particular asset with a quarter of the archive being in non-English languages and both transcription and translation have been undertaken on many of these.

The Tomlin archive will be published on the 'Mollusca Types in Britain \& Ireland' online platform (https://gbmolluscatypes.ac.uk/) where it will spearhead the beginning of the first digital British and Irish malacological archive repository.

\section*{THEIR}

\section*{SKILLS}

Languages
History Science

THE WORK
Data Entry Transcription Translation Article writing

\section*{THE DEVELOPMENT}

Handwriting interpretation Researching people, scientific names \& historical references Working in a museum environment
Article \& blog writing

\section*{MUSEUM BENEFITS}

Much faster progress with the project
A more dynamic \& diverse department
Staff gained management experience

\section*{VOLUNTEER BENEFITS} Skills development Influencing career decisions \& directions Support \& purpose during the Covid-19 pandemic

\footnotetext{
Harriet Wood, Jennifer Gallichan \& James Turner
Volunteers 2015-2018: Cal James, Elin Sutton, Talia Brown
Volunteers 2019-2022: Susan Jones, Megan Wilkes, Kajal Davies
}
AMGUETBFA CYMRU
Department of Natural Sciences Amgueddfa Cymru - Museum Wales Cardiff, UK, CF10 3NP Email: harriet.wood@mu

\title{
of 5 -alpha-reductase in the development of a freshwater gastropod.
}

Konstantinos Panagiotidis \({ }^{1}\), Giang Huong Duong \({ }^{1}\), Alice Baynes \({ }{ }^{1}\)
\({ }^{1}\) Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom. Email: konstantinos.panagiotidis@brunel.ac.uk
1. Introduction

In vertebrates, steroidogenic enzymes 5-alpha reductases (5aR) convert testosterone to 5a-dihydrotestosterone.
However, the function of 5aR1 \& 5aR2 in molluscs remains unknown.

Pharmaceutical disruption of 5aR in Biomphalaria glabrata was shown to disrupt normal embryo development causing the emergence of a "bananashaped" shell \({ }^{1}\)

2. Methodology

Aims:
1. Identify patterns of expression of \(5 a R\).
2. Identify endogenous control genes in B. glabrata embryos.
3. Understand the role of \(5 \mathbf{a R}\) in early development of B. glabrata.

Figure 3: Embryo collection and RNA isolation from Biomphalaria glabrata: (1) dissection of embryos from egg capsules, (2) preservation of embryos in RNA-later, (3) removal of RNA-later, (4) homogenization of tissue, (5) RNA extraction using RNA isolation kit.

Total RNA was extracted from day 1 - day 5 postoviposition embryos (Figure 2 \& 3) and albumen
cDNA synthesis was carried out using 200ng total RNA from each embryo stage (Figure 2), and albumen gland (i.e. adult) tissues respectively.

RT-qPCR was used to confirm the presence and measure the "quantity" of 5aR1 \& 5aR2 in all samples.
4. Preliminary normalisation data

Candidate endogenous control genes Lhis2a, Lywhaz (previously validated in Lymnaea stagnalis \({ }^{2}\)), Myoblogin and aTubulin are being validated for stability

Group 1: day 2-5 embryos + Albumen gland Group 2: day 2-5 embryos
Figure 1: Pharmaceutical exposure to Dutasteride (1) and Finasteride (2) causes the emergence of "bananashaped" shell in B. glabrata embryo (3).
gland tissue.
 -
of 5aR1 and 5aR2 in:

Figure 2: Early developmental stages of Biomphalaria glabrata embryos; (a) day 1 postoviposition, (b) day 2 postoviposition, (e) day 5 postoviposition (f) early juvenile.
3. 5aR expressed in embryos and albumen gland tissues

Gene expression analysis confirmed the presence
- day 2 postoviposition embryos (data not shown)
- day 3-5 postoviposition embryos and albumen gland tissues (Figure 4).

Figure 4: Quantification of \(5 a \mathrm{R} 1\) and \(5 \mathrm{aR2}\) in day \(3-5\) postoviposition embryos and albumen gland tissues by RT-qPCR.

Figure 5: Cycle threshold (Ct) values (\(\mathrm{n}=3\)) for candidate endogenous control genes in group 1 (day 2-5 embryos \& albumen gland) and group 2 (day 2-5 genes in

\section*{5. Limitations and future approaches}
- Lhis2a and Lywhaz normal expression levels were altered by NRT amplification
- Validation of endogenous control genes in B. glabrata is a work in progress.
- Plans to test and validate \(>10\) extra candidates that were identified through literature.

Stability normalisation software will be implemented to find the most suitable pair.

5aR1 and 5aR2 will then be normalised against the most suitable pair of endogenous control genes.

\section*{3D X-ray microscopy reveals Zospeum troglobalcanicum} Absolon, 1916 and new allied species in caves of the Western Balkans (Eupulmonata: Carychiidae, Zospeum)
\(\vartheta\)
A. Jochum \({ }^{1}\), P. Michalik \({ }^{2}\) \& B. Ruthensteiner

«SNSB

Introduction:
The character poor shells (\(<1.5 \mathrm{~mm}\)) of the subterranean genus Zospeum (Bourguignat, 1856) are difficult to morphologically access for taxonomic assessment. Due to their small size and fragility and the associated difficulty of finding them alive for molecular and ecological studies, accessing information from rare shells is a taxonomic priority (Jochum et al. 2015). Though we know more about Zospeum's widely sampled northern distribution in caves of the Eastern Alpine and Dinaride mountain ranges (Inäbnit et al 2019), its southernmost range in southern Croatia, Bosnia-Herzegovina and Montenegro is still largely underexplored and under sampled. In this study, we use 3D X-ray microscopy to access significant characters in Zospeum's only known southern Balkan member, Z. troglobalcanicum Absolon, 1916. Up to now, this species has lacked known voucher material and is documented via a single image of 13 shells piled together from the early 1900 's. Recent research at the Natural History Museum Vienna (NHMW), Vienna, Austria has recovered a singular syntype shell deriving from Absolon's collection. By comparing 3D X-ray images of this shell to those from shells deriving from 15 different southern Balkan cave populations culled from museum collections, w identify significant internal character states for interpreting and proposing species hypotheses based on these morphological data.

Southern Balkan Cave populations (15) assessed in our study.
 Image of proposed
lectotype of Zospeum
troglobalcanicum troglobalcanicum
Absolon, 1916 from Absolon, 1916 from
Benetina pecina cave,
Herzegovina (NHMW Herzegovina (NHMW
Moll. Coll.Edlauer \(32.749)\) showing
assessed morphologiassessed morphologi-
cal character states. A. Measurements include
shell height (sh), shell shell height (sh), shell
width (st), aperture
height (ah), aperture height (an), aperture
width (aw), height of
last whorl' (hlw) and last whorl (hlw) and
spire angle (SA). B-D.
Morphological characMorphological charac-
ter states include columella configuration
(co), Lamella form and
(co), Lamella form and
position on the
and size (ps) and the concolumella (la), peristome configuratio,
figuration of the umbilical zone (um).

Methods:
A Phoenix Nanotom \(m\) (mostly 1600 projection images, \(360^{\circ}\) rotation for ca. 80 mins , voxel size ca. 1 mm , voltage 80 kV , current \(325 \mu \mathrm{~A}\)) and an XRadia MicroXCT-200 (mostly 1600 projection images, \(360^{\circ}\) rotation for ca. 90 mins, voxel size ca. \(2 \mu \mathrm{~m}\), voltage 40 kV , current \(200 \mu \mathrm{~A})\) X-ray micro-computed tomography system were used fore carried out with Amira 6.4 software applying manual segmentation for discrimination of external and internal shell structures. Final visualization was conducted using the Volume Rendering module. aperture height (ah), aperture width (aw), height of last whorl (hlw) and spire angle (SA). Diagnostic and measurement tables were constructed to compare significant morphological features (ie. character states) recognized in each of the 3D-scanned perspectives. Species were assigned based on these criteria.

\section*{Results \& Discussion:}

Our study integrated both internal shell and external morphological data, providing taxonomic support for the species, Zospeum troglobalcanicum and Z. simplex Inäbnit, Jochum \& Neubert 2021 as well as strong evidence for 10 undescribed species deriving from 15 populations. A lectotype is proposed for \(Z\). troglobalcanicum. Overall, we found that 3D X-ray
microscopy significantly aided in the determination of microscopy signiicantiy aided in the determination of
characters and the interpretation of morphological characters and the interpretation of morphological
analyses. Moreover, since the tiny shells are devoid of any analyses. Moreover, since the tiny shells are devoid of any
residual animal tissue (ie. mummies), precluding eventual residual animad tissue (ie. mummies), precuaning evenua i
molecular study using this ontion, 3 D X-ray microscopy is molecular study using this option, 3D X-ray microscopy
the best means for nondestructively accessing and the best means for nondestructivery aucts not only
assessing such material. Our result demonstrate the relatively high morphological diversity in ztudies concerning single site, narrow-range endemics in suates concerring singie site, narrow-range endemics in
subterranean fauna of the southern Western Balkans. Characters such as the internal configuration of the coiumeria, its terminai position in the alignment of the incomplete lamella refilect locally isolated speciation processes. Until new exploration and fresh material allows for additional molecular investigations of populations from the same caves in an integrative
taxonomic approach, this comprehensive study especially provides a solid basis of morphological datafor all future studies concerning congeners at Zospeum's anthernmost Dinaric range.

\footnotetext{
 (MCSMNH-PMSL-MOI.--Vekevovin 30300) Duboki io cave.
References:
Absolon K 18
Absolon K (1916) Z vy̌zkumných cest po krasech Balkánu. O balkénské temnostniz zvifienê., Zlatâ Praha 33: 574-576.
 Evolution 19: 135-177.
Jochum A, Slapnik R, KIussmann-Kolb A, Pall-Gergely B, Kampschulte M, Martels G, Vrabec M, Nesselhauif C, Weigand AM (2015) Groping through the

}

We thank Marko Vrabec for compiling the map and Anita Eschner (NHMW) and Rajko Slapnik for kindly loaning us shells housed in the collections in Vienna and Ljubjjana.

Apoio e Naturalizaçāo em Areas de Importància para Caracolis Terrastres

Espécies-alvo

\section*{Support and Naturalization in Areas of Importance for Lond Snails}

 Th

\section*{Target species}

\section*{Principais ameaças e açōes}

年 2.

Fewe te ventr ia lon vesem.

 neen

\section*{Main threate and actions}

vare

 RLenten)
\&

 emmetita

\section*{Areas de otuaçato}

 tusp sten

\section*{Areas of octivity}

 Kompluy

\section*{E 5 man \(=\) —}
\begin{tabular}{|c|c|c|c|}
\hline Ex: & & \[
\frac{\text { An }}{\text { Norser }}
\] & \\
\hline
\end{tabular}

\section*{botu}

Exhusentionjadie Techilizche Ueviversiat

\section*{The world in a snail shell \\ by Claudia T'luste, Klaus Birkhofer and Udo Bröring \\ Huste, C. ©̌ Binkhofer. K. (202t). Shells of the Roman smail are important micuohabitats for soil invertebuates. Soil Organisms, 93(3), 141-152.}

\section*{INTRODUCTION}

Shells of molluscs from snail farms are used as food additives or construction material but can also function as a microhabitat for wild bees or other arthropods (Müller et al, 2008; Potts et al., 2005). Especially shells of Helix pomatia (Linnaeus, 1758) are more often used by shell adopters, which may be due to the relatively large shell size (Bogusch et al., 2019; Heneberg et al., 2020).

With this study, we aim to understand how shell size, the local dominant vegetation and climatic differences between sample periods affect utilization patterns by shell adopters.

\section*{METHOD}

1408 empty shells of H. pomatia were placed in eight subpopulations. 704 in Feb. 2019 till Nov. 2019 and 704 in Feb. 2020 till June/July 2020. Within those subpopulations, we choose 16 study plots based on two dominant vegetation types: herbaceous vegetation or deciduous trees without herbaceous vegetation.

\section*{LITERATURE}
 hign numbers of empty shells in anthropogenic habitats is insufficient to attract shell adopters among the insects. - In insect Conservation and Heneberg. P, Bogusch, P. \& Hlavackovova, L. (2020): Experimental confirmation of empty snail shells as limiting resources for specialized bees and

\section*{RESULTS \& DISCUSSION}
\(91.4 \%\) of all collected shells were occupied and the average number of shell adopters was 1.5 time higher in shells
collected in summer compared to autumn. The number of shell adopters per shell was 1.5 times higher in study areas dominated by herbaceous vegetation compared to trees. Shell width significantly affected the composition of shell adopter communities. Shells of H. pomatia provide important multipurpose benefits for a wide range of soil organisms. The use of empty shells from heliciculture in local restoration projects of open. tree-free areas, holds the potential to support a diverse invertebrate fauna with additional refuge habitats.

\section*{Assessing species boundaries in the freshwater snails' family Physidae using coalescentbased delimitation methods}

Bianca Sartini do Espirito Santo \({ }^{1,2,}\) Mariana Fonseca Rossi \({ }^{1,2,3}\), Ximena Maria Constanza Ovando \({ }^{1,2}\) \& Sthefane D’ávila \({ }^{2}\) 1 Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil. 2Museu de Malacologia Prof. Maury Pinto de Oliveira, Universidade Federal de Juiz de Fora, MG, Brazil. 3Laboratório de Protozoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil. Email: sthefanedavila@hotmail.com

Email: sthefanedavila@hotmail.com

A common issue for several freshwater snails' families is the fact that, for some genera, the criteria for species delimitation are scarce, subjected to intraspecific and ontogenetic variation, or insufficiently discrete to allow a clear distinction between species. For these genera, the use of molecular approaches is decisive in recognizing and validating species. Herein, we applied coalescent methods to delimit evolutionary significant units (ESUs) in Physidae. We used 496 sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene available in GenBank and ascribed to six genera and 25 nominal species; and the algorithms GMYC (General Mixed Yule-Coalescent) with two criteria (single-threshold and multiple-threshold), PTP (Poisson Tree Process) and mPTP (multi-rate Tree Poisson Process). From the analysis of these four delimitation methods, we found out that the MPTP represent a more accurate alternative to solve inconsistencies in recognizing and delimiting significant evolutionary units in Physidae. The majority of ESUs inferences using MPTP showed high bootstrap support. The matrices of genetic distance generated for the mPTP showed that most of the pairwise combinations of ESUs presented interspecific distance higher than \(5 \%\), considered as the threshold of interspecific distance for Physidae.

The mPTP presented the higher frequency of match profiles and showed the smaller number of splitter cases. Some ESUs delimited by the mPTP with high support values were split in different ESUs by the other methods, with genetic distances that fall into the intraspecific limits. These results demonstrate the strong support for most of the ESUs delimited by mPTP and the corresponding taxonomic outcomes concerning species limits. Herein we applied coalescent delimitation methods to Physidae, a family of freshwater snails that present several issues related to the recognition of species boundaries. This approach allowed us to address important taxonomic questions, showing new avenues for future taxonomic research. Our finds showed that the morphological operational criteria used to delimit several valid species fall into the limits of intraspecific variability, evidencing the presence of taxonomic inflation within this family. Finally, our results have also evidenced the presence of cryptic diversity under the nominal species Physella acuta, Beringophysa jennessi, P. pomilia and P. gyrina.

Figure 1. Phylogenetic tree inferred by maximum likelihood based on 657 bp of the mitochondrial cytochrome oxidase subunit I (COI) gene of Physidae species. Pseudosuccinea collumela (Say, 1817) was used as outgroup. The circles close to the nodes represent the bootstrap values. The evolutionary significant units
(ESUs) delimited by the multi-rate Poisson Tree Processes (mPTP) are highlighted in the colors frames.

Figure 4. Splitter cases in Physidae using the coalescent delimitation method multi-rate Tree Poisson Process - mPTP. ESU: significant evolutionary unit.

Figure 2. Geographic distribution of the significant evolutionary units (ESUs) recovered using the coalescent delimitation method multi-rate Tree Poisson Process - mPTP.

Figure 5. Lumper cases in Physidae using the coalescent delimitation method multi-rate Tree Poisson Process - mPTP. ESU: significant evolutionary unit.

\title{
EXTENDED MOLLUSK SPECIMEN NETWORK AT THE UNIVERSITY OF MICHIGAN Museum of Zoology (UMMz) MZ LSA MUSEUM OFZ00L0GY
}

Taehwan Lee, Thomas F. Duda, Jr., and Diarmaid Ó Foighil University of Michigan, Department of Ecology and Evolutionary Biology and Museum of Zoology 3600 Varsity Dr., Ann Arbor, MI 48108 USA

\section*{Introduction}

The UMMZ Mollusk collection has served as a premier resource for scientific research and education for over a century. To enhance its utility, we have led a long-term effort to digitize the collection and to link specimen records with associated extended data. This process has transformed the collection into a globally-accessible, integrated body of information that has consistently generated \(>60,000\) downloads and \(>50\) million views annually since 2019. Our future endeavors will focus on the continued development of the collection's extended specimen database.

\section*{UMMZ Mollusk Collection}

The University of Michigan began building a collection of mollusks in the first half of the 19th century. With current holdings of approximately five million specimens, the Mollusk Division's collection has long ranked as one of the most important freshwater and land snail collections in North America.
- Houses \(\sim 251,000\) cataloged lots including \(>400\) holotypes and \(>1600\) paratype lots
- Holds excellent taxonomic and geographic coverage of non-marine mollusks
- Includes several significant subcollections:
-Bryant Walker Collection: one of the world's largest private mollusk collections with \(>100,000\) lots and \(\sim 2\) million specimens
Royal Ontario Museum Collection: North American, mainly Canadian, freshwater/land mollusks Stelfox Sphaeriid Collection: important reference collection of cosmopolitan freshwater bivalve Lyophilized Tahitian Partulids: ~1600 freeze-dried tissues of a largely extinct snail family

\section*{A New Century for the UMMZ (Research Museums Center)}

During the past decade, the entire collection was relocated to a newly renovated Research Museums Center (RMC) with environmentally-controlled collection spaces and new archival specimen cabinets and drawers.

Fig. 1. Newly renovated Research Museums Center (RMC)

\section*{Digitizing Molluscan Biodiversity at UMMZ}

Since the turn of the century, data for \(>200,000\) lots of mainly freshwater and terrestrial mollusks have been entered into the UMMZ Specify database, a process facilitated by the support of five National Science Foundation (NSF) awards, including four Thematic Collections Networks (TCN) grants.
I. Computerization of the University of Michigan Museum of Zoology's Mollusk Collection (2005-2010)

Implementation of Specify as the UMMZ Mollusk Division Database
- Development of a searchable online mollusk collection database on the UMMZ website
II. Great Lakes Invasives TCN:

Documenting the Occurrence through Space \& Time of Aquatic Non-indigenous
 Girtailahtes

Fish, Mollusks, Algae \& Plants Threatening North America's Great Lakes (2014-2018) Digitization of non-indigenous species, and their congeneric indigenous taxa, present in the Great Lakes Basin.
Participation of \(>25\) institutions from Canada and eight U.S. states

\footnotetext{
Fig. 2. Student workers image specimens and enter associated data into the local Specify database.
}
III. InvertEBase TCN

Reaching Back to See the Future:
Species-Rich Invertebrate Faunas

\section*{}

Document Causes and Consequences of Biodiversity Shifts (2014-2019)
Rapid data entry of georeferenced locality data to form a solid foundation for distribution mapping and to examine change over time due to large scale perturbations
Inclusion of 18 arthropod/mollusk collections with special focus on the US fauna

\section*{IV. PILSBRy TCN:}

Enhancing Access to Taxonomic and Biogeographical Data to Stem the Tide of Extinction of the Highly Imperiled Pacific Island Land Snails (2019-2023) Digitization and enhancement of biological information of land snails from Polynesia-Micronesia
East Melanesia biodiversity hotspots
- Development of a centralized online online database - PILSBRy.

\section*{V. ESB TCN:}

Mobilizing Millions of Marine Mollusks of the Eastern Seaboard (2020-2024)

Assembly of data from roughly 4.5 million mollusk specimens from 14 institutions Improved access to data that can be utilized to establish patterns of genetic/morphological variation of mollusks on the Gulf and Atlantic coasts of the U.S.

\section*{VI. Achievement:}
\(>50,000\) specimen images and \(>10,000\) label/catalogue scans have been added to verify and enhance specimen data
Networking of georeferenced locality data have formed a solid foundation for distribution mapping Digitized data and images are available through Symbiota web portals (greatlakesinvasives.org, invertebase.org and pilsbry.org), national resources (idigbio.org and gbif.org) and the University of Michigan Digital Library.
A total of 106 students (UM/non-UM graduates/undergraduates and high school volunteers) have received training and have collectively participated in this effort so far.
 ig. 3. Generated images and extracted data

\section*{Future Directions}

Data entry foci will shift to include not only marine, wet and tissue specimens but also derivative products such as gene sequences and metagenomes. Efforts will be made to identify and complete records lacking critical data fields to maximize their value. All the associated digital data residing in disparate databases will be linked directly to the specimens.

Fig. 4. Some of the 106 students and volunteers who have participated to-date in digitizing molluscan biodiversity at the UMMZ.

In 2002 this campaign was founded by the late Kart-Hemz Beckmann (19482007), who was a member of the board of the German Malacological Soci: ety ("Deutsche Malakozoologische Gesellschaft" = DMG). The campaign was intended to publish information about the chosen "Molluse of the Year and to promote molluscs in public. Especially popular media such aged and enabled to present the "Weichtier des Jahres" by texts and photographs.
The "Weichtier des Jahres" is elected by a board of trustees ("Kuratori um"), comprising the malacological societies and institutions in Germany A leaflet about the particular "Weichtier des Jahres" is produced annu ally. It normally consists of 6 pages of which 4 respectively 5 are about the species and the remaining part is explaining the campaign itself
 man Malacological Society.
Gerhasd Haszpranaar from the Bavarian State Collection of Zoo ogy took over to be the public relations officer and the former regional president Winesm Weiongesr (1939-2018) was the first president and figurehead for the first years of the campaign.

Shortly before his deat Kabt-Henz Beckwann handei over the responsibiity to VoutRath Wisse and asked him organize the "Weichtier des Jahres" on behalf of the Ger man Malacological Society.

\title{
20 years of \\ "Weichtier des Jahres" (German Mollusc of the Year)
}

\author{
by Volldath Wiese
}

The "Weichtier des Jahres" (German Mollusc of the Year) project presents interesting molluscs to the public since 2003. In Germany various annual promotions of animals, plants or biotopes are established. When "Weichtier des Jahres" was founded, about a dozen other themes of nature objects already existed.

2003: The first German Mollusc of the Year was Vertigo moulinsiana. One of the starting points was, that in 2002 the German Post printed two beautiful stamps with molluscs as representatives of endangered animals. a bit more about the biology of this tiny swamp snail, which is only about 2.5 mm in length, specializing to live predominately on Carex and protected by the Habitats Directive (FFH) of the European Union.

2005: The Great grey slug or Leopard slug Limax maximus is a nice example that slugs are not necessarily garden pests and that most species are not feeding on green plants. Its elegant shape anu spectacuiar mating behavior make it one of still quite common, in woodland as well as in gardens. 2006: At the beginning of the 20th century the Thick shelled river mussel Unio crassus was the commonest species of the large river mussels.
Due to pollution and regulation of running water systems, now most small populations are lost and the species is highly endangered, in some regions threatened by extinction. Maybe \(90 \%\) of their former
populations
are destroyed. 2007: /sognomostoma isognomostomos (translated: Masked snail) is showing beautiful periostracal
hairs on hairs on its 10 mm
has almost closed the closed the opening of the
shell with heavy lamellae and teeth in order to protect itself from enemies. 2008: The Mouse ear snail Myosotella myosotis is a marshes. It represents the highly marshes. It represents the highly
specialized organisms of this endangered and protected habitat. 2009: Bythiospeum husmanni (translated: Husmann's groundwater snail) is a very small species with extremely localized distribution in westernmost Germany. It lives in the groundwater (subterranean water bodies) and was up to now only collected on very few occasions.

2010: The Two lipped door snail Alinda hiplicata is representing the highly diverse family Clausilifidae which is living in many gardens in central Europe. Its elongated shell has an interesting internal closing system of plicae, lamellae, and the clausilial plate.

\section*{References:}

 Res.
 .

2004: The River nerite Theodoxus fluviatilis is a species of the primeval mollusc group of Neritimorpha. In Germany it is related species in Germany are only represented by very small relic populations and are threatened by extinction.

The Lesser ramshorn snail Anisus vorticullus is one of the few species which are strictly protected by the Habitats Directive of the European Union. Quite often the common Anisus vortex is misidentified as the nach rarer and not easily

2012: The Amber snail Oxyloma elegans pinpoints on the necessity of anatomical determination, though common it is still not sufficiently known.
and only very few populations survived. Extremely large mantle lobes of the body cover \(90 \%\) of the shell.

2016: The Greater European pea clam Pisidifum amnicum is
 of tiny clams is represented by 20 species which are living in almost all local water bodies 2017: The Round-mouthed snail Pomatias elegans is the largest German operculate land snail. Despite of various other anatomical specials one of the most unusual facts about it is its way of walking by alternately using the longitudinal parts of its sole.
2018: The Red whelk Neptunea antiqua is the largest shelled gastropod in Germany. It exhibits an interesting variability from the offshore regions of the North Sea to the brackish waters of the Baltic. It represents endangered marine molluscs and is an example for toxic effects of antifouling substances
decades after being ban
species of dry cal-
2019: The Heath snail Helicella itala represents the endangere climbing in
the vegetation for aestivation is typical for Helicella. dimbing in 2020: The Rotund dise Discus rotundatus is one ot the commonest and most widespread molluscs if centra Lurope. It may be found in most natural gar:
dens,
Uens, even commoniy on the underside of plant pots. Tis an example for the many small snails, which are
harmless to garden

2021: The Common cuttlefish Seri garien pant.
Iuscs. Its cuttlehorice are 2022: The Bavarian spring snail Sadleriana baverica is an example for very restricted distribution, in Germany only known in one spring of Munich. Therefore it is also representing the 2022 Worrd Congress of Malacology which is hosted by the malacologists of Munich.

Special thanks are going to all members of the "Kuratorium Weichtier des Jahres" for their active cooperation to accum \(\qquad\) ar

\section*{Aloha! First shallow-water Solenogastres from Hawai'i}

Katharina M. Jörger \({ }^{\boldsymbol{1}}\), Meghan Yap-Chiongco \({ }^{\boldsymbol{1}}\), Kevin M. Kocot \({ }^{\mathbf{Z}}\), Franziska S. Bergmeier²,3 \({ }^{1}\) Mollusca Department, SNSB-Bavarian State Collection of Zoology, Munich, Germany. Email: joerger@snsb.de \({ }^{2}\) Department of Biological Sciences, The University of Alabama, Tuscaloosa, USA. \({ }^{3}\) Systematic Zoology, LMU Munich, Germany.

\section*{Background}

Solenogastres exhibit the highest species diversity in the deep sea, but ongoing sampling events have revealed a considerable undiscovered diversity also in the interstitial pore spaces of fine to coarse sands in shallow-water. Five years ago, during the MarineGEO workshop on Coconut Island, Hawai'i, we discovered 20 specimens of meiofaunal Solenogastres. These were assigned to three different species in two different families (Lepidomeniidae and Meiomeniidae), based on scleritome and anatomical data, as well as phylogenetic analyses.

\section*{Lepidomeniidad from Hawai'i}

While Meiomeniidae sp. and Lepidomeniidae sp. 1 present characters typical for the respective meiofaunal family, Lepidomeniidae sp. 2 challenges our current classificatory system by a unique mix of characters: In contrast to the otherwise adpressed scleritome in lepidomeniids composed of different types of imbricated scales, which gives them a smooth and shiny appearance, it bears elongate, radially projecting lanceolate sclerites. Other taxonomic characters include a distichous radula and foregut glands of Type A, numerous large, turgescent mesenchymal cells, which fill the entire body cavity, an unusual muscular spawning duct and the presence of a dorso-terminal sensory organ:

\section*{Computed Microtomography (Micro-CT) in the Anatomical Study and Identification of Solenogastres (Mollusca)}

Jesús Martínez Sanjuán \({ }^{1}\), Kevin M. Kocot \({ }^{2}\), Óscar García-Álvarez¹, María Candás \({ }^{1}\) and Guillermo Díaz-Agras \({ }^{1}\)
\({ }^{1}\) REBUSC, Rede de Estacións Biolóxicas da Universidade de Santiago de Compostela, Estación de Bioloxía Mariña da Graña, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
\({ }^{2}\) Department of Biological Sciences and Alabama Museum of National History, University of Alabama, Tuscaloosa, AL, United States

\section*{Introduction}

Despite recent advances, Solenogastres are still an understudied group of molluscs in all of their aspects. The Microcomputed tomography (Micro-CT) is a technique that allows the visualization of internal anatomy of specimens in a fast, non-destructive way, unlike classical histology. In this research, we wanted to compare the descriptions of Proneomenia sluiteri, Dorymenia menchuescribanae and Anamenia gorgonophila to micro-CT scans of these species to determine if it ispossible to identify them based on the characters visible with micro-CT: genital opening, seminal receptacles, copulatory stylets, respiratory folds, atriobuccal cavity and the general shape of the ventrolateral foregut glands. Results

\section*{Material and methods}

Samples were dehydrated in ethanol 80\%, 90\%, 96\%, 24 hours each, and then stained with \(1 \%\) iodine in ethanol \(96 \%\) from 3 days to 1 week depending on the size of the specimen. Then, they were dehydrated with hexamethyldisilazane (HMDS) for 2 hours and air dried overnight, and scanned (\(55 \mathrm{kV}, 165 \mu \mathrm{~A}\) and 360 of sample rotation, pixel size of \(6.78 \mu \mathrm{~m}\) for \(P\). sluiteri, \(5.97 \mu \mathrm{~m}\) for \(D\). menchuescribanae, and 2.98 and \(4.95 \mu \mathrm{~m}\) for both specimens of A. gorgonophila, respectively) with a Skyscan 1172 (Bruker, Belgium). Images were reconstructed using NRecon (Bruker, Belgium) and cleaned using CTAn. DataViewer (Bruker, Belgium) was used to obtain 2D transverse sections and CTVox (Bruker, Belgium) was used to visualize 3D images.

Figure 1. Proneomenia sluiteri, cross-section view in different zones of the anterior body. A - Atriobuccal cavity. B, C-Oesophagus. D-Oesophagus entering midgut. E, F-Midgut. Figure 2. Proneomenia sluiteri, sagittal view of the posterior body. A - Spawning duct zone. B - Rectum zone.
Figure 3. Dorymenia menchuescribanae, sagittal view of the anterior body. A - Ventrolateral foregut glands zone. B - Pharynx zone
Figure 4. Dorymenia menchuescribanae, dorsal and cross-section view in different zones of the posterior body. A, B - Through spawning duct. C - Through pallial cavity. D - Spawning duct opening and rectum. E-Through pericardium.
Figure 5. Anamenia gorgonophila (Alborán), sagittal, dorsal and cross-section view of the anterior body. A - Through pharynx. B - Dorsal view. C - Through atrium. D - Through pharynx. E - Through midgut. Figure 6. Anamenia gorgonophila (Alborán), sagittal, dorsal and cross-section view of the posterior body. A - Through spawning duct. B - Dorsal view. C - Through spawning duct opening. D - Through spawning ducts. E-Through seminal receptacles
Figure 7. Anamenia gorgonophila (Iceland), sagittal view of body. A - Anterior body. B - Posterior body.
Abbreviations: Ab, Abdominal spicules; Abc, Atriobuccal cavity; Al, Alcyonacea; At, Atrium; Co, Copulatory stylets; Dc, Dorsal caecum; Di, Diverticles; Dso, Dorsoterminal sense organ; Dvm, Dorsoventral musculature; Gd, Gonopericardioduct; Go, Gonad; Ht, Heart; Mg, Midgut; Mo, Mouth; Oc, Octocorallia; Ov, Oocyte; Pc, Pallial cavity; Pd, Pericardioduct; Pdg, Pedal Gland; Pg, Pedal groove; Ph, Pharynx; Phg, Pharynx glands; Po, Preatrial organ; Pp, Pedal pit; Pr, Pericardium; Pvs, Pallial cavity ventral sac; Re, Rectum; Rs, Radular sac; Sd, Spawning duct; Sdo, Spawning duct opening; Sr, Seminal receptacles; Vfg, Ventral foregut glands; Vs, Ventral sinus.

\section*{Conclusions}

Microcomputed tomography has proven to be very useful if we want a quick and non-destructive approximation to internal anatomy in solenogasters, and family and even genus level identification can be reached through microCT study. However, it still remains complementary to histological techniques, as the radula and other hard parts were difficult to visualize. Introduced slug species in Hungary fanaribitent

\author{
Ágnes TURÓCI \({ }^{1,2}\) \& Barna PÁLL-GERGELY \({ }^{1}\)
}

\title{
\({ }^{1}\) Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary \\ \({ }^{2}\) Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
}

\section*{Introduction}

The Hungarian molluscan fauna is thoroughly explored (Varga et al., 2005). Slugs, however, usually ignored in ecological and faunistic studies, due to two main reasons. Firstly, their storage in ethanol is more complicated compared to dry snail shells. Secondly, their identification is difficult because of the few reliable identification guides (Rowson et al. 2014, Cameron, 2016) and the fact, that dissection is essential for a number of species groups. Our aim is to write an identification book of Hungarian slugs, including photographs of living slugs and anatomical characters as well. During this work, we discovered 6 new species to the Hungarian fauna, 2 of them are already published (Turóci et al., 2020).

\section*{Materials and Methods}

From 2019 to 2022 we intensively collected slugs all over Hungary. We payed a special attention to botanical gardens and horticultures of Budapest, assuming that these are potential hotspots of unintentional introductions of slugs. The collected specimens were stored in plastic containers with wet paper towel and disposed in fridge. Photos were taken by Canon EOS 2000d camera with Tamron SP AF90mm F/2.8 Di MACRO 1:1 macro objective. Dissection was implemented with Zeiss Stemi 305 stereomicroscope. After photographing, we killed the specimens in \(20 \%\), and preserved in \(75 \%\) ethanol.

\section*{Results}

Tandonia kusceri (H. Wagner, 1931) is a medium sized slug with brownish pink colour and dorsal keel. Epiphallus (epi) long and spirally coiled, vas deferens (vd) long (Fig. 1).
Krynickillus melanocephalus Kaleniczenko, 1851 is a medium sized slug with dirty white colour and deep black head and nape. Penis (p) consists of a thinner basal and a swollen apical portion (Fig. 2).
Limacus maculatus (Kaleniczenko, 1851) is a large bodied slug with greenish-grey colour and darker and lighter spots. Bursa copulatrix (bc) connects to the penis (p), not to the oviductus (ovi) (Fig. 3).
Ambigolimax valentianus (A. Férussac, 1821) is a medium sized slug with light brown or creamy brown colour with two lateral bands. Penis \((p)\) is claviform, broadened to the tip with a thick or lobular, bluntended penial gland (pg) (Fig. 4).
Deroceras invadens Reise, Hutchinson, Schunack and Schlitt, 2011 is a small sized slug with brownish coulour but lighter rim around the pneumostome. Proximal penis (p) has two appendages (app) with several penial glands (pg) between them (Fig. 5).
Milax nigricans (Philippi, 1836) is medium sized blackish or black colour and thick dorsal keel. Large accessory gland (ag) connects to the atrium (a). Atrium stimulator (sti) is big, flattened conic shaped with several rows of spine-shaped papillae situated on the base of the stimulator (Fig. 6).

\section*{Discussion}

The increasing number of introduced molluscs is traditionally explained by the climate change (Mainka \& Howard, 2010) and the increased international transportation of goods (Hulme, 2009), mostly agricultural and horticultural products. Since 3 out of the 6 introduced species are still restricted to horticultural areas, it seems that the latter is the key factor. Slugs can easily hide in the pots of horticultural plants and tolerate long distance journeys lingering in the soil. In the future we will monitor the distribution of the non-native slug species, and collect data on the horticultural damage they make.

\section*{Acknowledgements}

\section*{References}

Cameron, R. (2016): SUus.

\title{
THE PHYLOGENY OF FRESHWATER MOLLUSC GENUS BROTIA H. ADAMS 1866 (GASTROPODA: PACHYCHILIDAE) FROM NORTHEAST INDIA
}

Anushree Jadhav \({ }^{1,2}\), Surya Narayanan \({ }^{1}\), Chinta Siddharthan \({ }^{1}\) and Aravind Neelavara Ananthram \({ }^{1,3}\) \({ }^{1}\) SMS Foundation Center For Biodiversity And Conservation, Ashoka Trust For Research In Ecology And The Environment (ATREE), Bangalore, India \({ }^{2}\) Manipal Academy of Higher Education (MAHE), Manipal, Udupi, India
\({ }^{3}\) Yenepoya Research Centre, Yenepoya (Deemed To Be University), University Road, Derlakatte, Mangalore, India Email: anushree.jadhav@atree.org

\section*{INTRODUCTION}
- The Pachychilid genus Brotia H. Adams 1866 is distributed across south and Southeast Asia, comprising 46 species (Köhler and Glaubrecht 2001, 2006).
- In India, the members of the genus Brotia are distributed in the Ganges-Brahmaputra river basin and represented by five valid species (Köhler and Glaubrecht 2001, 2006). - The major issue with this genus is in regards to the synonymies. Although Brotia has recently been revised, the taxonomic issues for the Indian species still need to be addressed (Köhler and Glaubrecht 2001, 2006).
- This study highlights the systematics of Indian Brotia, significantly adding to the limited knowledge on Indian freshwater gastropod fauna.

\section*{OBJECTIVES}

To resolve the phylogenetic relationships of Genus Brotia from Northeast India and decipher the divergence time of this genus using molecular data.

\begin{abstract}
METHODS
Fieldwork was carried out in NE India (Fig. 1) and samples were preserved in absolute ethanol. Genomic DNA was extracted using modified CTAB DNA extraction method (Chakraborty et al. 2020) and amplified two mitochondrial markers (COI and 16Sr RNA).

Phylogenetic analysis: Maximum Likelihood, Bayesian Inference, delimitation (ABGD) and divergence time analysis was carried out. SE Asian Brotia sequences were downloaded from GenBank. Sequences were manually checked and aligned using ClustalW implemented in MEGA X (Higgins et al. 1994; Tamura et al. 2007). ML analysis was performed using the IQTREE webserver (Trifinopoulos et al. 2016). IQTREE used Modelfinder (Kalyanamoorthy et al. 2017) to find the best-fit models for each partition defined. BI analysis was performed in MrBayes v.3.2 (Ronquist et al. 2012) with default prior settings implementing the best-fit models as per Partitionfinder (Lanfear et al. 2017).

Molecular dating: Analysis was carried out using BEAST 1.8.2 (Drummond et al. 2012) for the concatenated dataset. The tree was calibrated using a substitution rate ranging from 0.0068 to 0.0118 (substitutions per site per million years; uniform prior). Approximate divergence times were estimated using the strict clock (SC) model.
\end{abstract}

Figure 1: Sampling location for Brotia in Northeast India (Inset map showing NE India)

\section*{ACKNOWLEDGEMENT}

Dept. of Biotechnology, Govt. of India for funding the study. Unitas Malacologia for travel support Nipu Kumar Das for the help in fieldwork.

Some examples of Brotia spp. from Northeast India used in this study

\section*{RESULTS}
1) ML and Bayesian analyses: All Indian lineages are nested within the SE Asian clade, with moderate to strong support. The ML tree shows eight well-supported clades (Fig. 2a). The Indian Brotia are recovered as paraphyletic. Preliminary phylogenetic analyses retrieved from both ML and BI analyses are largely similar for the Indian lineages, except for some nodes that are unresolved in BI analysis (Fig. 2b). All Indian lineages formed three clades, one with only Indian lineages and is sister to other Indian and SE Asian lineages with low support. Samples from Pobo and Gossaigoan (Assam), both from north of Brahmaputra are recovered as sister with moderate support together sister to samples from Manipur are sister to a Southeast Asian species with moderate support.
2) Species delimitation analysis: ABGD delimitation results suggest eight distinct species.
3) Molecular dating: Indian clades are nested within the Southeast Asian clade, suggesting "Into-India" dispersal. The molecular dating results show three major dispersal events between 20 million years ago and 14.49 MYA (Miocene to MidMiocene; Fig. 3)

Figure 2: Likelihood (a) and Bayesian phylogenetic tree (b) showing the relationship of Brotia spp.

Figure 3: Time calibrated BEAST tree for Genus Brotia based on 16 S and COI genes.

\section*{CONCLUSION}
- First ever phylogeny for Genus Brotia from India.
- Eight species of Brotia in India are recognized by delimitation analysis. Morphology and anatomical analysis remains to be done.
Members of the genus Brotia dispersed Into India during Early and Mid-Miocene. - Fossil calibrated tree needs to be done to get better idea about the dispersal time.

\title{
Global hotspots (and coldspots) of marine gastropod diversity and DNA barcode availability
}

 dimerrifor beconemone etimad

SYSTEMATIC. DIVISION

Open and inclusive science can help fill in the biodiversity picture

Ite peratevi foydern

 40-203it

enimar \(-\quad+\quad+3\)

\footnotetext{

 \(+7+2=\)

} Namon \(\square\) ETM-

\title{
How many single-copy orthologous genes from whole genomes reveal deep gastropod relationships?
}

\author{
Zeyuan Chen \({ }^{1,2}\) and Michael Schrödl \({ }^{1,2,3}\) \\ \({ }^{1}\) Mollusca, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
} \({ }^{2}\) Department Biology II, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany

\section*{Conflict of gastropods phylogeny using \\ single-copy orthologous genes (SOGs)}

The Gastropoda contains \(80 \%\) of existing mollusks and is the most diverse animal class second only to the Insecta. However, the deep phylogeny of gastropods has been controversial for a long time. Especially the position of Patellogastropoda is a major uncertainty. Morphology and some mitochondria studies concluded that Patellogastropoda is likely to be sister to all other gastropods (Orthogastropoda hypothesis), while transcriptomic and some other mitogenomic studies indicated that Patellogastropoda and Vetigastropoda are sister taxa (Psilogastropoda hypothesis).
With the release of high-quality genomes, orthologous genes can be better identified and serve as powerful candidates for phylogenetic analysis. Several newly published gastropod genome studies have tried to reconstruct gastropod phylogeny using hundreds of SOGs, however, the the conflict still remains when using SOGs in different taxon and gene sets also with different gene coverage.

223 SOGs (Chen et al. 2020)

529 SOGs (Lan et al. 2021)
1375 SOGs (Sun et al. 2020) 1357 SOGs (Sun et al. 2019)

\section*{Generation of different SOGs datasets}
we identified single-copy orthologous genes (SOGs) from 14 gastropods species with whole genomes available which cover 5 main gastropod subclasses. We generated different datasets from 395 up to 1610 SOGs by allowing species missing in different levels. We constructed gene trees of each SOG, and inferred species trees from different collections of gene trees.

\footnotetext{
\section*{Reference}

Chen Z, Schrödl M. 2022. How many single-copy orthologous genes from whole genomes reveal deep gastropod relationships? PeerJ \(10: 13285\)
Chen Z, Doğan \(\mathbf{O}\), Guiglielmoni \(\mathbf{N}\), Guichard A, Schrodl M. 2020. The de novo genome of the Spanish slug Arion vulgaris Moquin-Tandon, 185 (Gastropoda: Panpulmonata): massive expansion of transposable elements in a major pest species. bioRxiv

Sun J, Mu H, Ip JCH, Li R, Xu T, Accorsi A, Alvarado AS, Ross E, Lan Y, Sun Y. et al. 2019. Signatures of diverse terrestrialization revealed by four apple snail genomes. Moleculiar Biology and Evolution 36(7):1507-1520
 the origins of biomineralised armour. Nature Communications 11(1):1657
}

Larger SOGs sets rejected Orthogastropoda and recovered Psilogastropoda

The gastropod relationships constructed with different data sets and the corresponding posterior probabilities of different topology. H: Heterobranchia, C: Caenogastropoda, V: Vetigastropoda, N: Neomphalina, P: Patellogastropoda, B: Bivalve.

Removal of species (C. consors) with low
SOGs coverage supports Psilogastropoda

Gastropod phylogeny inferred from 847 SOGs identified from 15 species except \(C\). consors.

\section*{Summary}
- As the number of SOGs increased, the inferred topology changed from Orthogastropoda to Psilogastropoda s.I., with considerable support.
- The selection of the representative species and use of sufficient informative sites greatly influence the analysis of deep gastropod phylogeny.
- Whole genomes of Neritimorpha and Cocculiniformia are entirely missing and other major groups such as Neomphalina and Vetigastropoda rather than being represented by single or few members should be much more densely sampled, including the entire diversity of early branching subclades. Robust reconstruction of deep gastropod relationships will depend on well-assembled whole genomes from a large and balanced taxon set.

\title{
COMPARISONS AMONG GENOME ASSEMBLIES AND THE IMPORTANCE OF COMPLETE REFERENCE GENOMES. THE PENDING TASK IN MALACOLOGY
}

Carles Galià-Camps, Tilman Schell, Alba Enguídanos, Ángel Valdés, Miquel Arnedo, Xavier Turon, Marta Pascual, Carlos Carreras, Manuel Ballesteros, Carola Greve

\section*{BACKGROUND}

While most malacological research was traditionally focused on taxonomic and phylogenetics using few markers, the burgeoning field of genomics opens a wide range of new possibilities such as the study of gene gain/loss, structural comparisons, phylogenomics and phenotype-genotype associations, among others. However, only 68 molluscan genomes are publicly available so far, and a compromise must be sought between cost, effort, and quality of the genomes that better fits the goals of each study. Here, we compare the quality and performance of six low coverage Dendrodorididae genome assemblies, one high-coverage Dendrodoris genome assembly and the tunicate Styela plicata reference genome.

\section*{COMPARING GENOMES}

Low-coverage genomes

All the mitogenomes could be circularly recovered

\section*{GENOME ESTIMATES}

ASSEMBLY SIZE \& CONTIGUITY
Compared to other dorid genome sizes (\(\sim 2000 \mathrm{Mb}\)), genome assembly spans are very small \((<40 \%)\) and variable (\(27 \%-36 \%\))

ASSEMBLY COMPLETENESS

We could recover some single copy ortholog genes, although the number was variable

High-coverage genome

GENOME ESTIMATES
We could test several statistics according to Illumina reads although the results were unaccurate and not reliable due to coverage

\section*{ASSEMBLY SIZE \& CONTIGUITY}

Compared to other dorid genome size (\(\sim 2000 \mathrm{Mb}\)), genome assembly span is more than \(\mathbf{6 0 \%}\) of the total

\section*{ASSEMBLY COMPLETENESS}

We could recover some single copy ortholog genes, although the number was not that high and were moslty fragmented

ASSEMBLY SIZE \& CONTIGUITY
Compared to the estimated genome size (\(\sim 420 \mathrm{Mb}\)), the genome assembly is almost complete (\(>99 \%\)), being distributed in 16 chromosomes

\section*{ASSEMBLY COMPLETENESS}

We recovered almost
all the single copy ortholog genes

\section*{CONCLUSIONS}

\[
\begin{aligned}
& \text { Low coverage genomes are a nice tool to work with mitogenomes } \\
& \text { High coverage genomes recover a more contiguous and complete assembly, } \\
& \text { allowing some nuclear genomes analyses with few recovered genes } \\
& \text { Reference genomes recover a whole representation of the genome, } \\
& \text { translated to a putative capacity to perform any genomic study on them } \\
& \text { cgaliacamps@gmail.com CONTACT } \\
& \text { @GaliaCampsOmics }
\end{aligned}
\]
\begin{tabular}{|l|l|c|c|c|c|c|}
SPIXIANA & Supplement 30 B & WCM 2022 & MOR & 01 & München, September 2022 & ISSN 0177-7424 \\
\hline
\end{tabular}

\section*{20 years of 3D microanatomical research by the Munich malacologists around Prof. Haszprunar - a synopsis.}

Franziska S Bergmeier \({ }^{1}\), Bastian Brenzinger \({ }^{2}\), Heidemarie Gensler \({ }^{1}\), Gerhard Haszprunar \({ }^{1,2}\), Andreas Hawe \({ }^{1}\), Martin He \(\boldsymbol{\beta}^{1}\), Lisa Hobelsberger \({ }^{1}\), Katharina M Jörger \({ }^{1}\), Thomas Kunze \({ }^{1}\), Peter C Kohnert \({ }^{2}\), Timea P Neusser \({ }^{1}\), Chiara Pinkau \({ }^{1}\), Michael Schrödl2 \({ }^{2}\), Enrico Schwabe \({ }^{2}\), Elvira Wild \({ }^{1}\)

\({ }^{1}\) Biocenter of the Ludwig-Maximilians-University Munich, Germany / \({ }^{2}\) SNSB-Bavarian State Collection of Zoology (ZSM), Munich, Germany Email: hess@bio.Imu.de

The method of computer-assisted 3D reconstruction based on complete series of semi-thin sections has opened up a very fruitful field of research in zoomorphology, also for the study of small mollusk species. Before this approach, in many cases only external structural data were available (shell structure, SEM of soft body surface) and partly radula structures. Now it is possible to investigate the histology and the 3D microanatomy of all organ systems (e.g. digestive tract, nervous system, reproductive organs, circulatory and excretory systems etc.) in the soft body of complete specimens with justifiable effort, to display them in any perspective and organ constellation, and to compare species and developmental stages.

This means that even mollusk species in the millimeter range can be described or re-described in unprecedented morphological detail, drawing conclusions about the functional architecture of the organ systems and about adaptations to the habitat and way of life. The method thus provides a solid and modern basis for taxonomy and reconstruction of evolutionary history 2003 to 2022 several generations of researchers from LMU, SNSB-ZSM, and coworkers examined representatives of various mollusk groups (Polyplacophora, Solenogastres, Monoplacophora, Cephalopoda, Scaphopoda, Bivalvia, and many Gastropod groups, i.e. Patellogastropoda, Cocculinida, Neomphalida, various Vetigastropoda, Caenogastropoda, and Heterobranchia

\section*{A Shape analysis of three commercial estuarine bivalves from western Portugal}
T. Goulding \({ }^{1}\), I. Martins \({ }^{1}\), M. Gaspar \({ }^{2}\), P. Chainho \({ }^{1,4}\), M. Rufino \({ }^{2,3}\)

MARE - Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Portugal
\({ }^{2}\) IPMA - Instituto Português do Mar e da Atmosfera, Algés, Portugal
\({ }^{3}\) CEAUL - Centro de Estatística e Aplicações, Universidade de Lisboa, Portugal
Departamento de Biologia Animal, Faculdade Ciências da Universidade de Lisboa, Portugal
Email: tgoulding@fc.ul.pt

 coastal lagoon (
C.cedutve (c)

C
4tringo.

ค) IPMA
FCT

> Samples (\(\mathrm{N}=314\) R.phil; \(\mathrm{N}=139\) R.dec; \(\mathrm{N}=358\) Cedu) were collected from 5 systems on the west coast of Portugal. Shells were scanned and compared using both traditional morphometric approaches (shell length, width, and height) and geometric morphometric methods using 1 landmarks (MM). Landmark positions were rotated, scaled and translated through Generalized Procrustes Analysis (GPA). Centroid size was calculated using the geomorph package and a Principal Component Analysis (PCA) performed in order to try and identify differences in morphometry between species and location. All analyses was done in R. The tps suite was used to define LMs and for the thin plate spline graphics.

\section*{Discussion}
 2b), the Alb stite has on onvection sites the farges
smallest individuals and Obi the largest.
 PCA was run on the shape varibbles, produced by Procrustes superimposition (fig 2a). PC1 \(137.7 \%\)) and PC2
(25.9\%) jointy account for \(63.6 \%\) of the variance with PC3 (12\%) and PC4 (8\%) accounting for another \(20 \%\). Landmark contributions for both PC1 And PC2 include the hinge teeth and the anterior ligament scar, w
PCC also including the point where the pallial sinus and the pallial line meet. Interestingly landmarks
 growth), as it is confirmed comparing the pattern shown in the PCA with the centroid size across sites. The
exception being \(R\).phi fom Obi and Tej which appear to group closer to R.dec along PC2 when compared to
 hybridization can occur between these species therefore further ge
ascertain whether this may be a reason for this proximity in shape.

Patterns of shape variation were statistically evaluated using the Geomorph package \({ }^{34}\) and running a

 proximity betwee
and C.eduAVve

Regarding C.edu the smallest individuals were found in Tej and the largest in Alb (fig 3b). PC1 (29\%) and PC2
(24\%) for the C.edu PCA (ffig zai) account for 535\% of the variability while PC3 (14\%) and PC4 (19\%) account for

 Csize within the sample as indicated by the boxplot (fig 5).

\section*{Minitily \\ ilu-2}
```


[^0]:    references
    
     Brandt. R. (1974). "The non-marine aquatic Mollusca of Thailand." Archiv für Molluskenkunde,
    105 (i-iv): $1-423$.
     Davis, $G$. M. (1982). "Historical and Ecological Factors in the Evolution
    Adiptive. Radiation, and biogeography of Freshwater Adaptive, Radiation, and , Biogeography of
     and Evolution, 35 (2):518-522.
    
    
    
    

