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The mammalian mandible plays a fundamental role in food 
processing, as it transmits the forces generated by mas-
ticatory muscles to the food through the teeth (Maynard-
Smith & Savage 1959). Generally speaking, the greater 
the forces required to fracture ingesta, and the more often 
such forces are needed, the stronger the mandible has to 
be to maintain its structural integrity (Hogue 2008). In that 
line, it has been suggested that among primates, those 
that include hard-food in their diets have stiffer mandibles 
when compared to soft-food eaters (Marcé-Nogué et al. 
2017b). However, other attempts to establish relationships 
between mandibular morphology and dietary categories 
have not been particularly successful (Ross et al. 2012). 
If the latter is true and biomechanics cannot be used to 
establish relationships between morphology and function, 
it has been argued that it is probably because these bio-
mechanical analyses are flawed or incomplete, or that non-
mechanical factors such as phylogeny are more important 
determinants of morphology (Ross & Iriarte-Diaz 2014). 
Nevertheless, there is a general consensus that trying to 
understand the interaction between the mammalian feeding 
mechanism and the processed ingesta represents a unique 
opportunity for the study of ecomorphological adaptations 
in extant species, as well as having the potential to acquire 
valuable tools for the reconstruction of oral behaviors in 
extinct taxa. Hence the importance of this particular topic. 
	 The association between dietary preferences and bio-
mechanical performance has traditionally been studied as 
the relationship between dental and mandibular morphol-
ogy (Fig. 4.1). For example, carnivorous mammals have 
carnassials that act as blades allowing enlarged and often 
self-sharpening edges to pass by each other in a shearing 
manner. Herbivorous ungulates have developed reduced 
canine teeth and specialized molars to grind fibrous food 
by lateral movements. Among other examples, primates 
have teeth that exhibit an elaborated cusp pattern of the 
molars that crush the food (Kardong 2014).The way teeth 
work (e. g. blading, grinding, or crushing) is adapted to 
the diet as well as the morphology of the mandibles, thus 
enabling the generation of different models of distribution 
and position of the muscular forces and bite positions 
based on different geometries (Vizcaíno et al. 2016). The 
influence of muscular forces on the design of the shape 
of the mandible (e. g., Sella-Tunis et al. 2018 in humans), 
as well as the influence of the position of the condyle al-
lowing different mandible movements (Maynard-Smith & 
Savage 1959) are evidence that reinforces the idea that 
food is processed differently depending on mandibular 
morphology.

	 For these reasons, feeding biomechanics represents 
the set of analyses performed to “[. . .] relate variation 
in feeding system morphology (size and shape of mus-
cles, bones, teeth, tongues or joints) to variation in how 
animals feed (feeding behavior) and what they feed on 
(diet).” (Ross & Iriarte-Diaz 2014: 105). This relationship 
between muscular and bite forces, mandibular size and 
shape, and the consumed ingesta have previously been 
studied in the mandibles of different mammalian clades 
such as terrestrial Cetartiodactyla (Christiansen & Wroe 
2007, Hogue & Ravosa 2001, Spencer 1995, Varela & 
Fariña 2015), Chiroptera (Freeman 1979, 1981, 1984, 
1988, 2000), Primates (Bouvier 1986a,b, Taylor 2006) and 
Carnivora (Biknevicius & Ruff 1992, Radinsky 1981a,b). 
These works used classical biomechanics based on the 
laws of static mechanics and beam theory, hence not re-
quiring the application of computer simulation techniques 
to model complex biological geometries, thus avoiding a 
high computational cost. 
	 The eruption of computational methods opened a whole 
array of new possibilities to investigate feeding biomechan-
ics. Specifically, computational biomechanics represents 
the application of engineering computational tools, such 
as the finite element analysis (FEA) (Zienkiewicz & Tay-
lor 1981) to study the mechanics of biological systems. 
Computational models and simulations are particularly 
useful to predict the relationship between parameters that 
are otherwise challenging to test using experimental ap-
proaches and are also quite helpful when designing more 
relevant experiments, hence reducing the time and costs of 
such tests. The underlying premise of the method is that a 
complex geometry can be subdivided into a mesh consist-
ing of a number of finite elements in which the respective 
mechanical equations are approximately solved. Although 
FEA (see Rayfield 2007 for a review) or multibody dynamic 
analysis (see Curtis 2011 for a review of MDA) have been 
common approaches in engineering and biomedicine for 
more than thirty years, they have also been applied to 
biological research in order to address questions related to 
biomechanics and the evolution of living and extinct verte-
brates (using both 2D or high-resolution 3D models). Ver-
tebrate paleontologists have also applied complementary 
non-invasive techniques, such as computed tomography 
(CT), which is a useful tool to generate accurate 3D images 
of living structures in a reverse engineering process, thus 
facilitating the application of computational biomechanics. 
The reliability and bio-fidelity of the biomechanical models 
has increasingly improved by capturing the real geometries 
of the specimens under analysis.  Previous approaches 
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relied on simplified lever or beam models, which although 
still useful, possess many known limitations that can be 
overcome by modern computational biomechanics.
	 To date, FEA has been conducted in a wide spectrum 
of vertebrates providing new insights into biomechanical 
function, particularly regarding the constraints and adap-
tive values of certain morphologies and bone structures. 
These bony structures are generally considered to be a 
force transmission system that can be studied by mean 
of mechanics laws. For instance, the biomechanics of 
the mandible in different mammalian families has been 
studied using FEA to obtain the state of stresses during 
mastication in 3D models (Gill et al. 2014, Gröning et al. 
2011b, Lautenschlager et al. 2018, Püschel et al. 2018, 
Tseng & Binder 2010, Zhou et al. 2019), as well as using 
simplified planar models (Fletcher et al. 2010, Marcé-
Nogué et al. 2017b, Neenan et al. 2014, Piras et al. 2013, 
Serrano-Fochs et al. 2015). Other studies have approached 
this problem including the study of both the skull and the 
mandible (Dumont et al. 2011, Strait et al. 2013, Tseng 
2013, Veitschegger et al. 2018). Nonetheless, it is impor-
tant to keep in mind that if a study aims to detect dietary 
preferences, it would be preferred to analyze mandibles as 
part of the antagonistic system, since the lower jaw may 
be more susceptible to failure than the cranium (Wroe et 
al. 2010), and also because cranium morphology is influ-
enced by several other non-feeding variables (Tseng & 
Flynn 2018). In fact, it has been noted that cranial shape 

reflects a compromise between several diverse functions 
(e. g., phonation, cognition, respiration), which could mask 
a strong dietary signal (Püschel et al. 2018). By contrast, 
the mandible is primarily involved in food acquisition and 
consumption, and consequently it is to be expected that 
its morphology better reflects ingesta-related adaptations 
(Gröning et al. 2011b). 
	 It is logical to wonder how paleontologists and paleo-
anthropologists have applied these biomechanical tools 
in fossil taxa, taking into account that many variables are 
unknown and impossible to obtain from skeletal morphol-
ogy alone. The answer is relatively simple. If it is possible 
to study extant species that are phylogenetically related 
and/or share the same or similar diet to the fossil taxa of 
interest, and if it is possible to find correlations, associations 
or differences to their dietary preferences or their ingesta 
characteristics, then it would be possible to study the biome-
chanics of the fossil taxa and find the appropriate relation-
ships with the biomechanical data. Nonetheless, there are 
two important questions that need to be addressed before 
carrying out analyses on fossil specimens. These questions 
are related to the intrinsic nature of biological data and make 
the study of biological structures completely different to the 
more common mechanical problems solved by engineers 
in other fields. The first one is variation, which focuses on 
how different models are properly compared when con-
sidering both intra and inter species variability. This means 
that it is necessary to create an appropriate comparative 
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Fig. 4.1.  Morphology and bite forces in mammalian crania and mandibles.  A, cranium and mandible;  B, details showing dif-
ferent tooth morphologies;  C, free-body diagram of the biomechanical problem of the mandible during chewing;  D, von Mises 
stress results after a finite element analysis of three different taxa: Canis lupus (carnivore), Macaca fascicularis (primate) and 
Connochaetes taurinus (ungulate). Not to scale.
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framework where a large number of different models and 
data can be analyzed and compared. The second one is 
how to post-process the extremely large amount of data 
derived from FEA results or classical biomechanics in a 
quantitative way that allows the obtained data to be used 
and combined with statistics, geometric morphometrics, 
phylogenetic models or even machine-learning algorithms 
to try to find affinities between the feeding behavior and 
the diet of the taxa.
	 Consequently, the aim of this chapter is to discuss clas-
sical and computational biomechanics of the mandible in 
the study of dietary adaptations in mammals. Firstly, a brief 
theoretical background in mechanics will be provided to 

facilitate understanding of the concepts used in this chapter. 
Afterwards, these concepts will be used in examples of 
biomechanics of the mandible. Secondly, the use of FEA 
in mammalian mandibles will be discussed, along with the 
concept of a comparative framework that enables the com-
parison of different models, as well as reviewing the latest 
methods to quantify and compare a large number of FEA 
models. Finally, an example using different mandibles of 
armadillos will be provided and discussed to further develop 
the understanding of the topics under discussion. This will 
provide insights about the connection between mandibular 
biomechanical performance and dietary preferences.

Brief introduction to biomechanics

Theoretical background

Biomechanics is the study of the structure and function of 
the mechanical aspects of biological systems, at any bio-
logically relevant organization level, from whole organisms 
to small cells, using the methods of mechanics (Alexander 
2005). By contrast, mechanics is a more general field of 
science concerned with the behavior of any physical body 
subjected to forces or displacements.
	 Biomechanics comprises several sub-areas, such as 
for example aerodynamics to study the flight of birds and 
insects, hydrodynamics to study how fish swim, locomo-
tor mechanics to study how animals move, as well as the 
study of chewing mechanisms using static theory, among 
other sub-fields. Statics is the branch of mechanics that 
is concerned with the analysis of loads acting on physical 
systems that are in static equilibrium with their environment. 
It means that a body is in static equilibrium when it fulfils 
the first condition for equilibrium, which requires that the 
net force applied to the system must equal zero, as well 
as the second condition for equilibrium, meaning that the 
net torque applied to the system must also be zero. This 
is the application of Newton’s second law when the body 
has a null acceleration.
	 Newton’s three laws of motion are physical laws that, 
taken together, constitute the basis of classical mechanics. 
	 First law:  An object in uniform motion remains in that 

state of motion unless an external force is applied to 
it.

	 Second law:  The vector sum of the external forces F 
on an object is equal to the mass of that object multi-
plied by the acceleration vector of the object.

	 Third law:  When one body exerts a force on a second 
body, the second body simultaneously exerts a force 
equal in magnitude and opposite in direction against 
the first body. They are called action force and reaction 
force.

Newton’s laws describe the relationship between a body 
and the forces acting upon it. Therefore, they are the base 
of any biomechanical model, both classical as well as the 
computational ones.

Free-body diagram.  A free-body diagram (FBD) is a 
graphical illustration which is used to visualize the applied 
forces, movements, and resulting reactions on a body in 

a given condition or mechanical scenario. They depict a 
body or connected bodies with all the applied forces and 
moments, as well as reactions that act on that/those bod-
ies. An FBD is an important step in understanding statics, 
dynamics and other forms of classical mechanics, because 
is not meant to be a scaled drawing. It is a diagram that is 
modified as the problem is solved.
	 A free body diagram explicitly excludes some things: 
(1) Bodies other than the free body (2) Constraints; the 
body is not free from constraints; constraints have just 
been replaced by the forces and moments that they exert 
on the body (Newton’s third law) (3) Forces exerted by the 
free body (supported by Newton’s third law) (4) Internal 
forces and (5) in the case to solve a dynamic problem, the 
velocity or acceleration vectors.

Lever mechanics.  Lever mechanics are based on New-
ton’s laws and the condition for static equilibrium of statics. 
A lever is a body connected to a fixed point by a hinge or 
pivot called fulcrum and obeys the following physical law: 
the ratio of output to input force is given by the ratio of the 
distances from the fulcrum to the points of application of 
these forces.
	 Lever mechanics is useful in the context of chewing 
biomechanics, when studying the effect of muscles of the 
mandible on the bite force. There is a parameter called 
mechanical advantage (MA, equation 1) that is a measure 
of the force amplification achieved by using a mechanical 
system and is defined as the ratio of the force produced 
by the mechanical system (Foutput) to the force applied to it 
(Finput)

		  Foutput	 MA =	———	 (equation 1)
		  Finput

This parameter is useful because it is a dimensionless 
proportion (or ratio) of forces and, consequently, is not 
related to the size of the system. It allows to compare 
models without the influence of size on the results.

Elasticity:  Stress and strain.  Up to this point we have 
presented the concepts of biomechanics without consid-
ering what is happening inside the analyzed bodies, and 
without taking into consideration the effect of the forces on 
the deformation of a body. All the bodies in our surroundings 
experience deformations. For instance, there could be small 
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deformations that we cannot see in concrete buildings, or 
there might be larger deformations in rubbers, such as in 
the case of a chewing gum. 
	 In physics, elasticity is the ability of a body to resist 
reversible deformations when it is under the action of ex-
ternal forces, and to return to its original size and shape 
when that force is removed. Although solid objects will 
deform when adequate forces are applied to them, it is 
important to bear in mind that perfect elasticity is only an 
approximation of the real world because few materials 
remain purely elastic, even after very small deformations.
	 When we want to study what is happening inside a 
body, and how this body deforms under the application of 
a load, we need to study the laws of elasticity using the 
methods of continuum mechanics (Mase & Mase 1999). 
Continuum mechanics is a branch of mechanics that 
studies the mechanical behavior of materials when they 
are modelled not as discrete particles but as a continuous 
mass.
	 In biomechanics, bony structures can be considered 
bodies modelled as a continuous mass with small defor-
mations, which means that one can apply to them all the 
equations derived from continuum mechanics and the 
linear theory of elasticity. Other biological structures such 
as soft tissues, are beyond the scope of this chapter and 
should be analyzed using non-linear theories.
	 When studying continuum mechanics, two concepts of 
great interest need to be mentioned, namely stress and 
strain. Stress is a quantity that corresponds to the internal 
forces that adjacent particles of a continuous material apply 
on each other. Stress is computed in a specific plane of the 
body and it is equivalent to the force divided by the surface 
of this plane. Strain is the ratio of the deformation of the 
material. It is computed as the proportion of displacement 
when a body is deformed with the original dimension of the 
body. Both are commonly used in biomechanics to study 
what is happening inside a body subjected to external 
loads.

		  Fx	 	 N	 	 s =	——		——		 (equation 2)
		  S	 	mm2	

		  x	 	 	 	 e =	—		—		 (equation 3)
		  l	 	 	 

Where s is the stress, F is the force, S the surface, e the 
strain,  x the distance of the elongation and l the original 
length of the bar (Fig. 4.2A). Compression or traction are 
obtained depending on how the balanced forces are ap-
plied (i. e. inwardly or outwardly) (Fig. 4.2B).
	 In general, stress and strain are computed in a specific 
point of the body in relation to a perpendicular plane and 
may be regarded as the sum of two components: the normal 
stress (compression or tension) perpendicular to this plane 
(Fig. 4.3A), and the shear stress that is parallel to this plane 
surface (Fig. 4.3B). Note that, for one point it is possible 
to define infinite normal and shear stress as function of 
the perpendicular plane in which they are computed (see 
tensorial notation below for further explanation).

		  Fx	 	 N	 	 s =	——		——		 (equation 4)
		  S	 	mm2	

		  Fy	 	 N	 	 t =	——		——		 (equation 5)
		  S	 	mm2	

In linear elasticity, stress and strain are related via the 
Hooke’s law that links both variables by means of the 
Young’s modulus. E is the Young’s modulus, a mechani-
cal property of linear elastic solid materials. Constitutive 
equations are used to relate two physical quantities that 
are specific to a material and that describe the response 
of that material to external inputs such as applied fields or 
forces. They are combined with other equations governing 
physical laws to solve physical problems; the relationship 
between applied stresses to strains is a linear constitutive 
equation because the relationship between them is linear 
and proportional to the Young’s modulus. Other materi-
als such as soft tissues use other constitutive equations 
because they do not follow linear elasticity. For bones, the 
use of Hooke’s law is quite common (Doblaré et al. 2004).

	 s = E · e	 (equation 6)

The Poisson coefficient is the ratio of transverse contrac-
tion strain to longitudinal extension strain in the direction 
of stretching force. It measures the Poisson effect, which 
is the phenomenon that happens when a material tends 
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to expand in directions perpendicular to the direction of 
compression or conversely, tends to contract if the material 
is stretched. This value is also necessary when defining 
the constitutive equation of the Hooke’s law in two or three 
dimensions.

Beam mechanics.  Classical beam theory is a simplifica-
tion of the linear theory of elasticity that provides a way of 
calculating the loads and deflection of beams when they 
are subjected to outer forces. The main difference between 
lever mechanics and beam theory is that levers are not 
deformable whilst beam theory assumes the deformation of 
the body under study. Another important difference is that 
in lever mechanics only Newton’s laws are used to solve 
the input and output forces whereas in beam theory, the 
use of the Newton’s laws is needed to get the input and 
output forces and then the stresses and strains inside the 
beam. For this reason, a beam is a mechanical prism: a line 
with an associated cross-section where we calculate the 
stresses. It covers the case of small deflections of a beam 
that are subjected to lateral loads only. Moreover, Hooke’s 
law is achieved between stresses and strains and plane 
sections keep on the plane after deformation. This means 
each cross-section of the beam is always at 90 degrees 
to the line that describes the beam (Timoshenko 1955).
	 Once we know the value of the input (actions) and output 
forces (reactions) solved by Newton’s laws, the force that 
each cross-section of the beam is dealing with, is computed 
via force and moment laws keeping the equilibrium of forces 
in all the cross-sections. The equations of the forces and 
moment laws depend on the position of the section along 
the beam. They can be graphically displayed with force 
and moment diagrams to facilitate the interpretation. For 
example, a force applied in a specific point can vary its 
action in the cross-section due to the distance from this 
point creating a bending moment. The forces applied in 
the beam can create compression/tension, bending, shear 
and torsion.
	 The stresses (both normal and shear) in the cross-
section of the beam depend on whether they are from 
compression/tension, bending, shear, and torsion or if they 
are linearly related with the forces applied via the Navier 
equations for bending, the Collignon theorem for shear, or 
the torsion equations (Timoshenko 1955). The diagrams 
are a good option to understand in which points the ef-
fects of the forces are higher in order to correlate them 
with anatomical or functional aspects (see the example 
below). In this case, the most important thing to consider 
is that the normal stress produced by the bending moment 
is parallel to the direction of the beam. If we decide that 
the axis of the beam is the x axis, then the normal stress 
is σx (see tensorial results below). And the shear or torsion 
stress are also lying on the plane of the cross-section.
	 Another important issue is that the transformation of 
shearing and normal forces, as well as bending and tor-
sional moments to the stress values implies the geometrical 
definition of the beam’s section. In structural mechanics, 
beams are easy to define because they have simple 
geometries, but when used in biological systems some 
simplifications need to be assumed. Mandibles can be 
modelled as hollow tubes (Porro et al. 2011) or the real 
cross-sectional properties at some locations of the model 
can be calculated following the method described by Cuff 
& Rayfield (2013).

	 In the above-mentioned examples, stress was meas-
ured for bending moments. Torsion, compression, or shear 
can also be studied using beam models. In this case, 
other diagrams must be obtained instead of the bending 
diagrams, and other equations (instead of Navier’s) are 
needed to relate the diagram to stress values. All these 
equations to transform the results from beam theory to 
stress require the definition of the geometric properties 
of the section of the beam. In this case the beam is the 
mandible. A good example to understand the implications 
of these simplifications in the mammal jaw can be found 
in van Eijden (2000).

Classical biomechanical methods  
applied to mammalian mandibles

Three examples are presented here in which the authors 
have used classical biomechanics. The two first exam-
ples by Maynard-Smith & Savage (1959) and Crompton 
& Parkyn (2009) are based on lever mechanics to study 
mechanical advantage, whereas Thomason (1991) used 
beam theory.
	 Firstly, Maynard-Smith & Savage (1959) studied the 
biomechanics of the mandible of one carnivore (Martes) 
and one artiodactyl (Strepsiceros). They analyzed the 
efficiency during chewing via the mechanical advantage 
of these two taxa which feed in different ways and have 
different mandibular shapes. The models included the 
temporalis and the masseter muscular forces, as well as 
the bite force of the canines. A reaction force appeared 
on the articulation point in the glenoid fossa. They found 
big differences between the mechanical advantage of the 
temporal and masseter muscles in the carnivore and the 
herbivore. These differences were associated with the dif-
ferent geometries of the lower mandible to perform a high 
MA in relation to the jaw closing muscles. In the case of 
the carnivore, the temporalis muscle presents the higher 
MA because the lever arm (the distance to the articula-
tion point) is higher. This corresponds to the muscle that 
allows the mandible to open in the sagittal plane creating 
a big and powerful bite without dislocating the mandible. 
In contrast, in Strepsiceros the masseter presents a higher 
MA because the lever arm is higher for the masseter. This 
is the muscle that allows the mandible to move laterally 
and antero-posteriorly making the grinding of herbivorous 
food possible. Therefore, the different geometries of the 
two mandibles and the position of the articulation point 
play an important role in the value of the MA, as well as 
for the efficiency of chewing.
	 By using lever models, Crompton & Parkyn (2009) 
studied the lower mandible of Triassic mammals in which 
both the reptilian and mammalian mandible articulations 
were defined. The models included the resultant forces of 
jaw closing muscles (temporalis, masseter, and pterygoid) 
and the bite force and the reaction force in the articulation 
thrust. They demonstrated how the component parts of the 
mandible musculature gradually changed their orientation 
(due to the changes in their geometry), in such a way that 
the reaction force to which the jaw joint was subjected in 
the articular thrust (the fulcrum of the lever) was progres-
sively decreased whereas there was an increase in the 
bite force across the post-canine teeth.
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	 Finally, Thomason (1991) modeled the skull of Canidae 
and Felidae as tubular beams formed by the facial and 
neurocranial regions, with the attached ‘jug handles’ of 
the zygomatic arches. In that case, the model included the 
reaction force at the articulation thrust and the muscular 
forces from the masseter and the temporalis. The bite 
force was studied in two cases: on the canine and on the 
molar positions. The authors wanted to test the hypothesis 
that the bending strength of the skull in some mammals 
correlates with the maximal loads imposed through the 
masticatory apparatus. The application of the beam theory 
allowed to assess the cranial strength during bending and, 
for instance, the Navier-Bernouilli equation was used to 
relate muscle and bite forces with the stresses inside the 
skull. In that case, the author used between 20 and 30 
transverse CT scan sections through each skull to calculate 
the cross-sectional properties for the equation. This is one 
of the first works to show that bending stresses might be 
of importance in the cranial design of mammals and also 
has set the stage for more detailed future modelling.

Practical example A.  Two different armadillos are studied: 
Dasypus kappleri and Chaetophractus villosus, each one 
presenting different dietary preferences. D. kappleri is a 
generalist insectivore, whereas C. villosus has an omnivore 
diet. The free-body diagram of the mandible, including 
masseter and temporalis muscle forces, is shown in Figure 
4.4. Fixed positions are located on the bite position and 
on the jaw joint, thus constraining both directions on the 

jaw-joint and the vertical displacement on the bite point.
	 Muscle forces are calculated using muscle areas, and 
a value of 0.3 MPa (force per unit area) is assumed as 
muscular contraction. This value, estimated by Alexander 
(1992), has been considered in several works as a valid 
estimate for the isometric contraction of each adductor 
muscle (Thomason 1991). In this example, we assumed 
that the insertion area of the muscle is a good proxy of the 
3D muscle cross-section, thus enabling the computation 
of muscular forces. 
	 Equilibrium of forces in the free-body diagram: Ac-
cording to the equations of equilibrium of forces and the 
condition for static equilibrium of the statics, the bite force 
– applying the equilibrium of moments in the jaw joint – 
can be solved using equation 7. Results can be found in 
Table 4.1. FM and FT are the forces of the masseter and 
temporalis, lM and lT the lever arms of the masseter and 
the temporalis and lTotal the length between the bite point 
and the jaw joint.

		  FM · lM + FT · lT  	 0,3 AM · lM + 0,3 AT · lT		 BF =	——————— =	——————————	
		  lTotal  	 lTotal	
	

(equation 7)

The results from classical biomechanics using the free-body 
diagram show that Chaetophractus villosus generates a 
higher bite force and possesses a more efficient mechani-
cal advantage. This higher biomechanical performance 
allows Chaetophractus villosus to eat a more demanding 
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Fig. 4.4.  Bite force diagrams of armadillo mandibles.  A, free-body diagram of a bilateral bite using a two-dimensional ap-
proach;  B, beam model;  C, bending diagram of Chaetophractus villosus and Dasypus kappleri from Serrano-Fochs et al. 
(2015).
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omnivore diet, whereas Dasypus kappleri probably does 
not need to perform a high bite force in order to crush 
insects before processing them.
	 Beam theory in a linear model: The use of the beam 
theory enables to find the maximum bending moment in 
the mandible by assuming that mandibular morphology 
can be represented as a straight line (Fig. 4.4). Curiously, 
both Dasypus kappleri and Chaetophractus villosus present 
similar values of maximum bending moment (1010 and 
946 N · mm respectively) but this does not mean that there 
is a lack in functional differences, because the capacity 
to withstand this bending moment exclusively depends on 
the design of the mandible. According to Serrano-Fochs 
et al. (2015),  the mandible of Chaetophractus villosus is 
thicker (5 mm vs. 3.5 mm) and the body of the mandible 
is broader than that of Dasypus kappleri. The corpus of 
the mandible of Dasypus kappleri is narrow in height and 
limiting its capacity to sustain the stresses derived from 
the bending moment. These results from beam models 
clearly suggest that Chaetophractus villosus is capable to 
withstand higher bending moments than Dasypus kappleri 
when chewing, therefore also is capable to process more 
demanding diets such as an omnivore one. 
	 There is a difference between using the free-body dia-
gram and the beam-model which explains the different bite 
force values (see Tab. 4.1 and 4.2 for the two approaches). 
The geometry assumed in both cases is different. In the 
free-body-diagram, the distances used from the muscles 
to the bite point and the condyle are based on the actual 
geometry, whereas in a beam model the position of the 
forces is in the line defined by the beam. This changes the 
values of the distances, and consequently, the value of the 

bite force. The free-body diagram is better suited to study 
muscle and bite forces, whereas the beam model allows 
the study of stresses in the cross-sections.
	 From the values of the maximum bending moment and 
from geometrical properties of the section of the mandible, 
normal stress values in the mandible can be found using 
the Navier equation (equation 8). In this example, we will 
assume a hollow ellipse as a constant cross-section of the 
mandible, and the second moment of inertia is obtained 
via equation 9.

		  MZ	 	 MZ		  b		 sxx =	——	· y =	———————	·	—	 (equation 8)
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				    ———————	
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Where Mz is the bending moment computed in the beam, 
Iz the second moment of inertia in the axis of the bending 
and y the distance from the centroid of the section to the 
point of the section under study.
	 High stresses are in the farthest point from the center of 
the cross-section during bending. Geometrical parameters 
of the section are described in Table 4.3 assuming, for this 
example, a constant cortical bone thickness of 1 mm in 
both models. The geometric parameters a, a1, b, and b1 

are defined in Table 4.3 and are real measurements from 
the models (Serrano-Fochs et al. 2015). The normal stress  
obtained using equations 8 and 9 for both mandibles as-
suming a beam model (Tab. 4.3) also supports that the 
mandible of Chaetophractus villosus is stronger than the 
one of Dasypus kappleri during chewing.

Table 4.1.  Results from equilibrium of forces.

Taxon Masseter area 
(mm2)

Temporalis area 
(mm2)

Masseter force 
(N)

Temporalis force 
(N)

Bite force (N) Mechanical  
advantage (MA)

Dasypus kappleri 105.37 153.18 31.6 45.9 15.66 0.2
Chaetophractus villosus 300.58 156.08 90.2 46.8 34.97 0.25

Table 4.3.  Reometrical parameters for the mandibles of Dasypus kappleri and Chaetophractus villosus when assuming a beam with 
a hollow elliptic cross-section.

Taxon a 
(mm)

a1 
(mm)

b 
(mm)

b1 
(mm)

Iz 
(mm4)

Mz 
(N · mm)

σx 
(N · mm2)

a1

b1b

a

Dasypus kappleri 3.51 0.51 8 6 82.81 1010 48.8

Chaetophractus villosus 4.94 2.94 12 10 274.71 946 20.7

Table 4.2.  Results from beam theory.

Taxon Masseter area 
(mm2)

Temporalis 
area (mm2)

Masseter force 
(N)

Temporalis 
force (N)

Bite force 
(N)

Mechanical  
advantage (MA)

Mz max 
(N · mm)

Dasypus kappleri 105.37 153.18 31.6 45.9 12.87 0.16 -1010
Chaetophractus villosus 300.58 156.08 90.2 46.8 17.63 0.13 946
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Brief introduction  
to finite element analysis 

The finite element analysis (FEA) is a non-invasive com-
puter simulation technique used in engineering. It uses the 
numerical technique of the finite element method (FEM) 
to solve the equations of continuum mechanics by divid-
ing a geometry into a finite number of discrete elements 
known as a mesh (Kupczik 2008) to which the equations 
are applied. Mechanical properties of these elements are 
defined in order to give the structure a realistic behavior. 
The model is constrained to anchor it in space and includes 
the external forces applied to it. FEA is used to solve the 
equations of the elasticity in a deformable body under the 
effect of external forces.
	 FEA and beam theory are two different approaches to 
solve the same mechanical problem, yet with the limitation 
that beam theory can be exclusively used when assuming 
linear geometries with cross-section, whereas FEA can be 
applied to any geometry. The equations of lever mechan-
ics based on Newton’s Laws are included when solving a 
mechanical problem in both FEA and beam theory. They 
are also solved when these methods are used. Therefore, 
beam theory and FEA can also solve reaction forces but 
it makes no sense to use these approaches to exclusively 
calculate these external forces, since they can be solved 
by hand using Newton’s laws (Sellers et al. 2017, Snively 
et al. 2015). 
	 In mammalian mandibles, FEA enables the observa-
tion of stress distribution patterns of the specimens by 
simulating loadings and forces involved in the masticatory 
function. Under equivalent loads, these stress patterns 
can be interpreted as a sign of the relative strength, with 
higher stress indicating a weaker mandible. Assuming that 
more robust or stronger mandibles would be needed both 
for processing harder food items, these mandibles should 
be expected to be weaker (i. e., displaying higher stress 
levels) than those belonging to animals feeding on harder 
items, such as nuts, shells or bones. On the other hand, 
differences in the stress distribution pattern may give a 
clue regarding different aspects of the feeding ecology of 
the analyzed species.
	 There are several types of FEA depending on the nature 
of the geometry imported. A three-dimensional geometry 
e. g., from a CT-scan implies the use of three-dimensional 
solid models; a two-dimensional geometry requires the 
solution of a planar model using the equations of plane 
elasticity. Surface geometries in a 3D space require the 
use of shell models, whilst geometries based on lines 
need the use of linear elements. The latter is the exact 
computational translation of beam theory.
	 It is usual to model mammal mandibles as three-
dimensional solid models (Gill et al. 2014, Gröning et 
al. 2011b, Püschel et al. 2018, Tseng & Binder 2010) or 
to represent them as simpler planar models (Fletcher et 
al. 2010, Marcé-Nogué et al. 2017b, Piras et al. 2013, 
Serrano-Fochs et al. 2015). In continuum mechanics, 
plane elasticity makes reference to the study of particular 
solutions of the general elastic problem in bodies that are 

geometrically mechanical prisms (that is, an area with a 
constant thickness) (Mase & Mase 1999). In particular, a 
plane stress solution occurs in structural elements where 
one dimension (the thickness) is very small compared to 
the other two, and the stresses are negligible with respect 
to the smaller dimension. 

Steps to perform a  
finite element analysis

Geometry of the model.  Models of mammalian man-
dibles can be obtained from the digitalization of real 
specimens by using CT-scans, photogrammetry or similar 
digitalization techniques that can register morphologies 
in three-dimensions and in full detail (see review in Cun-
ningham et al. 2014). Another option is to generate them 
from scratch based on photos or other templates in CAD 
software (see Rahman & Lautenschlager 2016 for the box 
modelling approach).
	 The advances in computational tools to perform virtual 
reconstruction and restoration techniques of the original 
morphology of fossils, enable the creation of accurate and 
realistic three-dimensional models (Lautenschlager 2016). 
In all cases, during the reconstruction process, irregulari-
ties in the surface due to the generation of the model from 
the CT scanner need to be repaired using refinement and 
smoothing tools (Marcé-Nogué et al. 2011). 
	 Planar models can be created from published photo-
graphs or built from scratch. In order to take the photographs 
in the most consistent way, some procedures need to be 
carried out in order to standardize images (de Esteban-
Trivigno 2011), and then the use of CAD software allows 
the creation of models based on splines which are traced 
on the picture (see Fortuny et al. 2010 and Serrano-Fochs 
et al. 2015 for the full methodology).

Material properties.  Bone is a rigid organ that forms 
part of the vertebrate skeleton. The hard and dense outer 
layer is composed of cortical bone tissue. Trabecular bone 
tissue corresponds to the internal tissue of the skeletal 
bone, being an open cell porous network. The mechanical 
properties of a particular bone depend on both composi-
tion and structure, which are fundamental parameters to 
be considered when simulating the behavior and response 
of a model when loads are applied. Although composition 
is not constant in living tissues, it is normally assumed 
(for simplicity and computational costs) that the mechani-
cal properties of cortical and trabecular bone depend on 
apparent density and mineral content (see Doblaré et al. 
2004 for a review). 
	 The difficulties in modeling bone material proper-
ties in FEA models have driven researchers to assume 
isotropic behavior and to consider that bone, like most 
biological materials, is elastic and fails under a ductile 
model of fracture (Nalla et al. 2003). Isotropy means that 
the properties are taken to be the same in all directions, 
whereas anisotropy means having different properties in 
different directions. Orthotropy is present when the material 

Finite element analysis  
in mammalian mandibles
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properties differ along the three orthogonal axes. Another 
common assumption of most FE analyses in the literature 
is to consider the mechanical behavior of bone (trabecular 
and cortical) as being linear, which is usually an accurate 
enough assumption (Doblaré et al. 2004). This means that 
the relationship between stress and strain is proportional 
and the constitutive equation of linear elasticity based on 
Hooke’s law can be assumed. This also implies that us-
ing Young’s modulus and Poisson coefficient is enough to 
characterize bone. Cortical bone is stiffer and, therefore, 
has a higher Young’s modulus than trabecular bone. 
	 One of the main problems when working with animal 
bones – and especially with fossil taxa – is the absence 
of material data to define Hooke’s law (Young’s modulus 
and coefficient of Poisson). This problem is normally tack-
led by using data available from closely related species, 
or from species with similar bone structure. The use of 
appropriate material properties depends on the available 
information from phylogenetically or ecologically related 
taxa. It is important to bear in mind that modelling other 
materials such as soft tissues, implies the application of 
non-linear constitutive equations, which in turn results in 
more computation time, (i. e., solutions mostly based on 
the equations of hyperelasticity). A hyperelastic material 
is a type of constitutive model of an ideally elastic mate-
rial for which the stress-strain relationship derives from a 
strain energy density function that does not follow a linear 
relationship. It is common to use these constitutive models 
in FEA for ligaments (Qian et al. 2009), cartilage (Gislason 
et al. 2017), or arteries (Early et al. 2009) but not when 
analyzing osteological structures, such as mandibles. 

Biting scenarios.  Different biting scenarios have been 
used to study the chewing mechanism of mammals. Ac-
cording to Preuschoft & Witzel (2002), the skull of mammals 
can be loaded in three different ways:  (1) assuming the 
weight of the head and prey or food acting downward on 
the mandible,  (2) applying arbitrary forces or movements 
in the plane of the tooth row that create movements of the 
prey in relation to the head (defined as extrinsic loads by 
McHenry et al. (2007),  and (3) applying the adduction of the 
mandible via the muscle forces which leads to reaction bite 
forces in the teeth (defined as intrinsic loads by McHenry 
et al. 2007). The cases with intrinsic loads can be modelled 
at the different tooth positions as bilateral (Püschel et al. 
2018) or unilateral bites (Ledogar et al. 2016),  whereas 
the group with extrinsic loads can be used to model axial 
twist, lateral shake, pullback, and dorsoventral movements 
(Attard et al. 2014).
	 The values of the forces in the different scenarios 
can be obtained from different information sources (e. g., 
literature, experiments, other modeling approaches such as 
MDA, etc.) or can be arbitrarily selected. When comparing 
different extrinsic models, arbitrary values can be a good 
choice (Attard et al. 2014), whereas for the intrinsic cases 
the values of the muscular forces can be calculated as a 
muscular contraction (see muscular forces in the intrinsic 
cases). 
	 Several authors have used multibody dynamic analysis 
(MDA) to previously predict bite forces or muscular forces 
as a source of information for the forces applied at the FEA 
models (Lautenschlager et al. 2018). A multibody dynamic 

system consists of solid bodies that are connected to each 
other by joints that restrict their relative motion. This kind 
of studies analyzes how mechanical systems move under 
the influence of forces and can also be used to identify 
which forces are produced during the dynamic behavior 
of the system under analysis. This topic is, however, out 
of the scope of this chapter and further exposition can be 
found in Curtis (2011) where the application of MDA in 
vertebrates is reviewed.

Muscular forces in the intrinsic cases.  The external 
loads that are acting on a body are applied as force or 
pressure on a surface. In a dynamic analysis, muscles are 
acting in combination to create a succession of individual 
static cases with several component contributions through 
time. In a static analysis (which is the one we are mostly 
referring to here) the muscle can be simplified as a force 
vector with an associated value for a specific case study. 
It is usual to analyze the so-called “theoretical maximum” 
which is when all muscles are acting together in a maximal 
tetanic contraction.
	 Muscle forces are calculated using muscular cross-
sectional areas and a value for the specific muscular ten-
sion of 0.3 MPa (force per unit area), which is assumed as 
muscular contraction. This value, estimated by Alexander 
(1992), is considered as an isometric contraction of each 
adductor muscle. The physiological cross-sectional area 
(PCSA) is the area of the cross-section of a muscle per-
pendicular to its fibers, generally at its widest point. 

	 F = P · APCSA	 (equation 10)

Where F is the muscle force, P is the specific muscular 
tension and APCSA is the physiological cross-sectional area.
	 Usually, when solving models of mammalian mandibles, 
the muscle forces (pterygoid, masseter, and temporalis) 
correspond to input values that have previously been cal-
culated, whilst bite force is the output value solved by the 
static equations.
	 Muscular forces can be applied homogeneously on the 
insertion areas (Püschel et al. 2018) or can be distributed 
tangentially over the attachment areas wrapped around the 
bone surface (Tseng et al. 2017). To define the direction of 
the muscular forces, there are several accurate methods 
that create frames of linear elements all over the muscle at-
tachments that linked the upper and lower jaws, with forces 
applied at the center of the frame (Attard et al. 2014). The 
simplest approach to determine the directions of the forces 
is defining the lines joining the centroid of the insertion area 
on the skull with the centroid of the insertion areas on the 
mandible (Panagiotopoulou et al. 2017, Püschel et al. 2018). 
In fact, if we assume homogeneous muscle force all over 
the muscle insertion, a single equivalent load applied at 
the centroid of the surface can replace a homogeneously 
distributed load applied on a surface. However, it should 
be mentioned that this single equivalent force generates 
little difference in the output values of stress and strain in 
the regions immediately outside of the applied force. This 
is because the specific force may create an artificially high 
stress (for more details see the problem of the maximum 
peak value addressed below).
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Boundary conditions.  Boundary conditions are defined 
to represent the unknown loads (for Newton’s third law), 
displacements, and constraining anchors that the structure 
experiences during the action of the forces. In general, it 
is recommended to avoid over-constrained models and 
redundant supports. Redundant supports are those in 
excess when the equilibrium is already guaranteed. It 
means that the number of unknown loads is higher than 
the number of degrees of freedom of the body. In a FEA 
planar model, the degrees of freedom of the body are three 
(the displacements in both directions and the rotation on 
the plane). For example, in Marcé-Nogué et al. (2017b) 
the boundary conditions are fixing both directions in the 
jaw-joint and only the vertical displacement at the bite 
point. This is a total of three constraints which is exactly 
the number of degrees of freedom for a planar model. The 
degrees of freedom of the body are six when analyzing 
3D models using solid elements: three displacements in 
each direction, and three rotations in each axis. Excessive 
constraints tend to add stiffness to the model, thus making 
it stiffer than it should be.
	 In addition, it is fundamental to avoid under-constrained 
models which could produce rigid-body motions of the 
model. This means that the number of unknowns is lower 
than the number of degrees of freedom and that we need 
to be sure that the model is fixed to avoid any possibility 
of translation or rotation.
	 In the case of mandibular models, boundary conditions 
are often defined so they represent the fixed displacements 

that mandibles experience during biting scenarios. The first 
boundary condition restrains the condyle at the level of the 
contact points with the mandibular fossa of the cranium. 
in order to represent the immobilization of the mandible, 
thereby constraining the translation of the jaw in all the 
directions. 
	 In intrinsic cases, a second boundary condition is 
applied to individual dental positions by fixing the dis-
placement in the vertical axis. They are usually applied 
at different dental positions in order to simulate different 
biting scenarios (e. g., molar or incisive bite). According 
to Newton’s third law, the corresponding reaction force 
represents the unknown bite force.
	 When a unilateral bite is modelled, then the phenom-
enon of torsion has great importance because only one 
bite point is being considered on one side of the mandible 
(namely the working side), which means that there is a 
balancing side that is not directly acting in the biting ac-
tion. In the balancing side, muscle forces can be reduced 
in order to remove a distractive tensile reaction force at 
the working side jaw to avoid being pulled apart (Greaves 
1978, Spencer 1999). 
	 In extrinsic cases, the fixed condition of the teeth is 
not used because instead of defining muscular forces to 
the posterior part of the mandible, a force is applied at 
the dental position. For cases in which the weight of the 
head and prey/food are simulated, this fixed condition of 
the teeth is also not considered because the weight of the 
prey/food is also applied to the teeth as a force.
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Fig. 4.5.  Flow chart of a finite element analysis. All the steps involved in the post-process: Creation of the model’s geometry, 
definition of the material properties, generation of the FEA mesh, definition of the boundary conditions and application of the 
forces.
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Mesh generation.  The mesh of a FEA model is a collection 
of interconnected elements joined at nodes, which defines 
the shape of the model where the physical problem will be 
solved using the mathematical equations of the FEM. Ele-
ments usually consist of triangles, quadrilaterals, tetrahe-
drals, hexahedrals or other simple convex polygons which 
simplify and discretize the geometry of the original model. 
	 A problem can be solved as a two-dimensional model 
or as a three-dimensional model. However, different finite 
elements are required (see Marcé-Nogué et al. 2015 for 
further details about FEA meshes). When the geometry that 
is required to be meshed consists of surfaces or lines, it 
is necessary to use shell or beam elements projected in a 
three-dimensional space. These elements require different 
formulation compared to the standard solid elements used 
in three-dimensional models but, usually, FEM packages 
allow their easy implementation. Two-dimensional problems 
are solved using the equations of plane elasticity and the 
model can be meshed with planar elements, which means 
that it is required to consider their thickness.
	 Currently, the main commercial FEA packages include 
several methods to automatically generate the mesh of 
the desired geometry without human intervention. This 
improves the analysis, but the mathematical complexity 

of the FEM still means that mesh generation has to be 
treated with care. It is important to find a reasonable bal-
ance between the best mesh to be built and analyzed, 
and computational limitations. Depending on the specific 
package, software or the file format of the imported geom-
etry, there are differences in the order of steps required 
to carry out a FEA. In some cases the mesh is generated 
in the first steps and then, the creation of the boundary 
conditions and the application of the forces are performed 
on the mesh (Figueirido et al. 2018) or, inversely, in other 
cases the inclusion of the forces and boundary conditions 
are performed on the geometry to then finally mesh the 
model (Püschel et al. 2018).
	 The different types of elements and the different types 
of mesh (structured, non-structured, uniform, non-uniform) 
and their pros and cons in the context of biological prob-
lems are discussed in detail in Marcé-Nogué et al. (2015). 
The quality assessment and the reliability of the mesh to 
solve FEA models is also discussed in Marcé-Nogué et 
al. (2015), and some examples of convergence results 
when the size of the elements is reduced can be found 
in Bright & Rayfield (2011b) and Tseng & Flynn (2015), 
where vertebrate species were analyzed. 

Understanding the outputs of FEA

Scalar results.  The solution of a FEA model generates 
several different outputs. A scalar is a quantity represented 
by a numerical value or magnitude that is independent of 
specific classes of coordinate systems, or one that is usu-
ally said to be described by a single real number. Strain 
energy or mechanical advantage are examples of scalar 
values. For example, they were used by Tseng et al. (2017) 
in FEA mandibular models to study the feeding capabil-
ity in fossil and living Lutrinae. Based on their results, it 
was hypothesized that the extinct species of giant otter 
Siamogale melilutra exhibited feeding ecomorphological 
adaptations that have no living analog.

Vectorial results.  FEA vectorial results are the ones 
represented by a vector. A vector is a quantity that has 
magnitude and direction and that is commonly represented 
by a directed line segment whose length represents the 
magnitude and whose orientation in space represents the 
direction. This can be also represented by separating the 
vector into two or three components depending on the 
dimensionality of the problem (i. e., 2D or 3D).
	 The force reactions derived by Newton’s laws are 
vectorial results. In cranial mechanics, the bite force is 
computed as an output result when muscle forces are 
applied as input variables. Bite force strongly depends on 
the size (Wroe et al. 2005) of the models and needs to 
be carefully used when comparing models of dissimilar 
sizes. However, if analyzed properly, it can be used in a 
comparative setting to evaluate bite performances given 
different tooth positions (Figueirido et al. 2014).

	 Displacements are also a vectorial result providing the 
information from the original position of a node of the model 
with respect to the new position of the same node after 
being loaded by the input forces. These results have been 
used to compare the deformation between the unloaded 
and the loaded model (Gröning et al. 2011a).

Tensorial results.  Tensors are important in physics be-
cause they provide a concise mathematical framework to 
formulate and solve problems of physics in areas such as 
stress, elasticity, fluid mechanics, and general relativity.
	 Stresses and strains are tensorial which means that 
they are represented by a tensor. Tensors are geometric 
objects that describe linear relations between geometric 
vectors, scalars, and other tensors and are represented by 
an organized multidimensional array of numerical values. 
The order (also known as degree or rank) of a tensor is 
the dimensionality of the array needed to represent it, or 
in other words, the number of indices needed to label a 
component of that array. For example, stresses and strains 
in three-dimensional models are represented by a matrix 
(a three-dimensional array) in a basis, and consequently 
correspond to a 3rd-order tensor. 
	 In plane elasticity, tensors are kept as a third order 
tensor but with zero values in all the stresses related to 
the third direction in plane stress, and with zero values in 
all the strains related to the third direction in plane strain. 
Plane stress stays different from zero in ez and plane strain 
sz but these values are negligible with respect to the other 
values, and, therefore, we can assume plane elasticity as 
a two-dimensional solution and solve only the x-y compo-
nents.
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		  	sx	 sxy	 sxz			  	ex	 exy	 exz			  	 	 	 	 		  	 	 	 	 	 s =		sxy	 sy	 syz		 e =		exy	 ey	 eyz			  	 	 	 	 		  	 	 	 	 		  	sxz	 syz	 sz			  	exz	 eyz	 ez	

(equation 11 and 12, for three-dimension problems)

		  	sx	 sxy	 0			  	ex	 exy	 0			  	 	 	 	 		  	 	 	 	 	 s =		sxy	 sy	 0		 e =		exy	 ey	 0			  	 	 	 	 		  	 	 	 	 		  	 0	 0	 0			  	0	 0	 ez	

(equation 13 and 14, for plane stress problems)

		  	sx	 sxy	 0	 		  	ex	 exy	 0			  	 	 	 	 		  	 	 	 	 	 s =		sxy	 sy	 0	 	 e =		exy	 ey	 0			  	 	 	 	 		  	 	 	 	 		  	 0	 0	 sz			  	0	 0	 0	

(equation 15 and 16, for plane strain problems)

This means that, in order to define the stress state or the 
strain state of a FEA model, it is necessary to know all 
the values of the components of the respective tensors in 
each point of the model under analysis. FEA simplifies this 
statement by solving the stress and strain tensor in points 
inside each element of the mesh. It is important not to 
confuse the FEA elements with the sides of the square in 
Figure 4.6. The square in Figure 4.6 is not a FEA element 
but just the graphical representation of the Cartesian planes 
that are required to be known in a point when we want to 
know all the values of the stress/strain tensor.
	 Depending on the orientation of the plane under con-
sideration, each component of the tensor represents a 
value of stress/strain: the component normal to the plane, 
called normal stress, and another component parallel to 
this plane, called the shearing stress. The symmetry of the 
stress/strain tensor simplifies the question to know only 
six values for defining all the tensor. 

Principal and equivalent values.  Principal stresses/
strains are the maximum normal stress a body can have 
at a point of its body. It represents only normal stress and 
it does not have any shear stress component. Mathemati-

cally speaking, principal values are the ones in the tensor 
when the shear components are null. They are useful to 
summarize all the stress states of a FEA model for the 
two maximum and minimum values instead of using all 
the different values of the stress tensor.

		  	sI	 0	 0	 		  	eI	 0	 0			  	 	 	 	 		  	 	 	 	 	 s =		 0	 sII	 0	 	 e =		0	 eII	 0			  	 	 	 	 		  	 	 	 	 		  	 0	 0	 sIII			  	0	 0	 eIII	

Equivalent values are scalar values of stress that can be 
computed from the stress/strain tensor in order to sum-
marize the stress state defined by all the components of 
the tensor to a unique value. In other words, an equivalent 
stress is the value of stress that creates a uniaxial stress 
state in the point to study, equivalent to the previous 
multiaxial stress state. The von Mises stress criterion, the 
Tresca criterion or the Rankine theory are different ways to 
reduce the multiaxial stress state to an equivalent stress. 
Von Mises and Tresca criteria are applicable for ductile 
materials whereas Rankine’s theory is preferred for brittle 
materials (Chen & Saleeb 1994).
	 The von Mises criterion is the most popular criterion 
for predicting the yield of ductile materials. Bone can be 
assumed to be either brittle (Doblaré et al. 2004) or ductile 
(Dumont et al. 2009). However, according to Doblaré et 
al. (2004), when isotropic material properties are used in 
cortical bone, von Mises is the most accurate criterion for 
predicting fracture location. This probably explains why it 
is in fact the most common criterion used in mandibular 
mechanics (Panagiotopoulou et al. 2017, Piras et al. 2013, 
Püschel et al. 2018, Tseng et al. 2017).

Uses of stress and strain.  There are several different 
approaches that have been applied to analyze the results 
derived from mandibular mechanics. While some works 
analyze stress (Attard et al. 2014, Lautenschlager et al. 
2016, Püschel & Sellers 2016, Tseng et al. 2017), other 
focus on strain (Gröning et al. 2013, Oldfield et al. 2012, 
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Panagiotopoulou et al. 2017). When using linear and 
elastic properties, it has been shown that both values are 
proportional and that the results of the distributions along 
the mandible are the same. This is due to the application 
of Hooke’s law, which establishes a proportional relation 
between stress and strain. 
	 Both stress and strain are accepted when comparing 
models below the fracture point, but, when we want to 
extrapolate these models to study fracture mechanics, a 
new debate is triggered: Is it stress or strain that causes 
failure? Probably the longest standing issue regarding 
failure criteria is whether they should be expressed in 
terms of stresses or in strains.
	 In engineering, the most commonly used form is the 
von Mises criterion expressed in terms of stress. Other cri-
teria that are used are the maximum shear stress criterion 
(Tresca), the maximum normal stress criterion (Rankine) or 
the maximum normal strain criterion (Rankine). Despite the 
von Mises stress being a stress-designed criterion based 
on the maximum distortion of the strain energy, the stress-
strain relations for isotropy can be used to convert the von 
Mises criterion in terms of stresses into a metric expressed 
in terms of strains. This transformation can be easily done 
using a simple mathematical procedure, but this does not 
obliterate the incontrovertible assumption that considers 
that all criteria can be switched from stress to strain (and 
vice versa). This is not always possible, especially when 
considering anisotropic material properties, but equally so 
for some isotropic cases. As an example, the maximum 
normal stress criterion and the maximum normal strain 
criterion take different forms when interconverted.
	 In this text, stress is taken as the fundamental form to 
be used when focusing on failure criteria. This is the direct 
consequence of the following conditions. Stress must be 
used if one wishes to have compatibility with fracture me-

chanics in the brittle range and with dislocation dynamics 
in the ductile range. Both of these classical theories require 
formulations in terms of stress.
	 On the other hand, strain has been shown valuable 
when comparing simulation results with experimental data 
(Bright & Rayfield 2011a, Gröning et al. 2012a), since strain 
gauges are commonly used in experimental settings. These 
electrical components experience changes in length as 
changes in resistance, and this property can be used to 
measure strain on a surface (e. g. bone) and compare it 
with FEA models.

Comparative framework

One of the most important decisions when comparing 
different specimens is the selection of taxa, provided that 
it allows to create an appropriate biological comparative 
framework. In addition, it is also important to build the 
models considering that they will be compared under 
equivalent loads in order to interpret the stress pattern 
differences of the models as a sign of relative strength. 
Comparing the strength allows to discern that more robust 
or stronger mandibles are needed to be able to process 
more demanding diets such as, for example, nuts, shells, 
or bones. A comparative framework can be defined as all 
the decisions we need to take into account in the post-
processing of FEA models that enable the comparison 
between models to analyze the biomechanical behavior of 
different species or specimens under equivalent mechanical 
scenarios. Post-processing involves all the steps carried 
out after solving the FEA models. All these considerations 
are not necessary, if the purpose is to simply analyze the 
distribution of stress or strain of just one mandible, e. g. to 
compare it against real data or to study mandibular facture.
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Fig. 4.7.  Stress and strain distribution in a plane stress model. Considered are all the stress variables of the tensor, principal 
stresses and equivalent von Mises, Tresca and Rankine. Model of Macaca fascicularis from Marcé-Nogué et al. (2017b).
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Orientation of the models.  All models must be oriented 
in the same way. Several options exist for mammalian 
mandibles, such as positioning them in an anatomical 
orientation, central occlusion or according to anatomical 
planes, such as the Frankfurt horizontal plane (Marcé-
Nogué et al. 2017b, Osborn 1987). Another option is to 
apply algorithms such as a best-fit alignment to orient all 
the models with respect to a common plane (e. g., Püschel 
et al. 2018 applied to talar morphology). It is important to 
orient all models consistently because different orientations 
can result in different muscle force orientations, which can 
potentially have a significant effect in the variation of the 
results (Gröning et al. 2012b).

Scaling the models.  When the analyzed specimens ex-
hibit significant size differences, it is necessary to adjust 
the models to a comparable size. There are two main 
ways of answering the question of how performance can 
be compared so that the effects of size and shape are 
disentangled, in order to exclusively focus on how shape 
affects mechanical performance for a given loading condi-
tion (Dumont et al. 2009).
(1)	Change the size of all the models to the same size and 

apply the same force.
(2)	Keep the differences in size in the models and apply 

an appropriate force that generates the same effect as 
carrying out the procedure described in 1.

In vertebrate models, it is more common to follow the 
second approach, thus keeping the original size of the 
model. However, even though both approaches are correct, 
they display the results in a different context. Some recent 
works have discussed which equations should be used to 
scale the models to the same size in order to study the 
stress patterns or the strain energy (Dumont et al. 2009, 
Marcé-Nogué et al. 2013), thus proposing that size could be 
removed either by modifying the dimensions of the model, 

Table 4.4.  Force equations in a scaled model B with reference 
to model A.  AA is the area of the reference model, AB the area 
of the scaled model,  tA the thickness of the reference model,  
tB the thickness of the scaled model,  VA the volume of the refer-
ence model and VB the volume of the scaled model.

Model type Comparing strain/stress Comparing  
displacements

Plane stress 	 	 AB			tB	FB =		 ——			——		FA	 	 AA			tA	
	 	tB	FB =		——		FA	 	tA	

Plane strain 	 	 AB	FB =		 ——		FA	 	 AA	
	
FB =	FA	

3D models 	 	 VB	FB =		 ——		FA	 	 VA	

3 2 	 	 VB	FB =		 ——		FA	 	 VA	

3

or the values of the muscular forces or muscular pressures 
applied. It is important to note that when comparing stress/
strain the forces should be scaled in a different way than 
when comparing other values, such as displacements.
	 For FEA planar models, the forces applied should be 
scaled using – for example – the quasi-homothetic trans-
formation proposed by Marcé-Nogué et al. (2013) to allow 
meaningful comparison between planar models. In this 
case, it is important to bear in mind if our planar models 
are following the equations of plane stress or plain strain. 
For FEA models in three-dimensions, the volume ratio 
should be considered for calculating the different forces. 
The equations that must be fulfilled between two models 
that are to be compared without the effect of size are shown 
in Table 4.4 depending on the elasticity problem used.
	 Some criticisms and improvements have been made in 
recent papers (Parr et al. 2012) regarding the widely used 
scaling methodology proposed by Dumont et al. (2009). In 
particular, the analysis of 3D complex biological structures 
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Fig. 4.8.  Stress and strain distribution in a three-dimensional solid model. Considered are all the stress variables of the tensor, 
principal stresses and equivalent von Mises, Tresca and Rankine. Model of Pithecia monachus from Püschel et al. (2018).
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has been improved, by considering complex inner cavities 
such as those present in skulls. In the latest literature it 
is possible to find several works focused on mammalian 
mandibles which followed the suggestions of Dumont et al. 
(2009) to scale their models in order to be able to compare 
von Mises stress via the surface ratio (e. g., Lautenschlager 
et al. 2016). Many other works have scaled their models 
using the volume ratio to then compare stress based on 
the allometric proportions between muscular forces and 
body mass (e. g. Attard et al. 2014, Tseng et al. 2017).
	 The main controversy regarding the scaling procedures 
is whether the scaling should be carried out by means of 
a surface ratio or via a volume ratio. Interestingly, authors 
such as Dumont et al. (2009) which propose the use of 
surface ratios, do not deny the usefulness of volume ratios 
when scaling models to compare von Mises stress. In fact, 
they define an “area proportion” which can be calculated 
from the areas but can also be deduced from volumes 
[volume]2/3 or length [length]2 which can be substituted for 
an area ratio. This means that both the surface ratio and 
the volume ratio are equivalent when the latter is raised 
to the 2/3 power. However, exchanging ratios in the equa-
tions cannot be done when comparing models that differ 
in shape, because models with different shapes do not 
necessarily have the same surface area to volume ratios.
	 To clarify some of the issues in this debate (i. e., how 
the scaling should be done when comparing von Mises 
stress), Marcé-Nogué et al. (2013) published a meth-
odological paper that was later followed by a practical 
application for 3D models by Fortuny et al. (2015), where 
it was shown that the relationship using the equations of 
continuum mechanics should be made by means of the 
volume ratios and not using surface ratios. These results 
agree with the fact that muscular forces and body mass/
volume are related with the 2/3 power (Meers 2003, Wroe 
et al. 2005).

Material properties.  The difficulty of obtaining informa-
tion on the material properties (namely Young’s modulus 
and Poisson’s coefficient) of bony structures due to the 
absence of data for the species under study or any close 
relatives, makes it very difficult to create a comparative 
framework with different material properties for each model. 
It is common to consider bone as an isotropic material for 

simulations, as real data for bone materials are unavailable 
for most species.  Moreover, if the comparison is made 
between the same bony structures in close relatives, it 
makes sense to use the same material properties for all 
the specimens compared. This is the usual procedure when 
comparing mammalian mandibles (e. g., Serrano-Fochs et 
al. 2015, Tseng & Binder 2010), even though some authors 
have obtained heterogenic and orthotropic properties by 
carrying out experiments (Panagiotopoulou et al. 2017).
	 When linear and elastic material properties are as-
sumed in a comparative analysis, the effect of the elastic 
modulus of the material is irrelevant for stress patterns. 
In the case of the strains and displacements, there is an 
inverse proportionality that is kept constant, between the 
values of the metrics and the changes in the elastic modu-
lus. These properties allow comparative studies without 
considering the real elastic materials properties (Gil et al. 
2015).
	 This evidence suggests that the use of the values that 
define a linear material (namely Young’s modulus and 
coefficient of Poisson) is not crucial for the development 
of the analyses proposed here, because these values do 
not affect the results when a relative comparison of stress 
results between models is performed. In that sense, ma-
terial properties should not be an issue when comparing 
bony structures.

Simplifications.  Apart from the material properties dis-
cussed above, models are, by definition, a simplification 
of reality which means that one has to be aware of which 
assumptions are required, so as to keep them in mind 
when interpreting the results. There are at least two issues 
of great importance that should be considered in relation 
to model simplifications (when required):
(1)	Knowing whether the model simplifications are not 

extremely affecting the sensitivity of the results.
(2)	Carrying out the same simplifications in all the models 

under comparison in order to avoid non-comparable 
scenarios/results.

In that context, a sensitivity analysis will test the influence 
of the different parameters of the FEA models. For example, 
Gröning et al. (2012b) tested the sensitivity of FEA models 
of a human mandible with different trabecular bone defined 
as a solid inner material with a lower Young’s modulus. For 
instance, this kind of analysis can give us information of 
how we can simplify trabecular bone without excessively 
changing the results of our models. Simplified modelling 
assumptions of material properties and muscle activation 
patterns may introduce analytical errors in analyses where 
quantitative accuracy is critical for obtaining rigorous results 
(Panagiotopoulou et al. 2017). For example, when compar-
ing mammalian mandibles it is common to segment the 
models as solid models without including trabecular bone 
properties, since it has been shown that the exclusion of 
trabecular bone does not affect the general results of a 
comparative FEA (Fitton et al. 2015) and because it has 
been argued that simplified models can reproduce the 
overall stress distribution patterns in ex vivo validation 
experiments (Bright & Rayfield 2011a).
	 Additionally, it is common not to segment the periodon-
tal ligament (PDL) despite some debate in the literature 
regarding the importance (or lack of it) of modelling this 
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tissue in models of the mandible in FEA (Bright 2014). Some 
modelling studies of the primate mandible have suggested 
that the presence or absence of the PDL might affect 
the obtained results substantially throughout the whole 
structure (Gröning et al. 2011a, Marinescu et al. 2005). 
	 Another discussed simplification in mammalian man-
dibles is the accuracy of the results when analyzing 
planar models instead of 3D models. Planar models can 
be useful to get insights of the main patterns of variation 
of stress from both a morphological and a biomechanical 
perspective, as it has been exemplified by Fletcher et al. 
(2010), Marcé-Nogué et al. (2017b), Neenan et al. (2014), 
Piras et al. (2013), and Serrano-Fochs et al. (2015). Planar 
models can be consistent with the results obtained from 
more complex scenarios, even though the level of detail 
is not the same. Probably the most important reason is 
that planar models study a specific biological scenario 
that can be simplified, and the validity of the models will 
be accepted if they can achieve the objective for which 
they were created. For example, planar models of primate 
mandibles can be good FEA models when distinguishing 
hard and soft-food eaters because the use of this simpler 
models allows to distinguish these categories in terms of 
stress values (Marcé-Nogué et al. 2017b).
	 Planar models are easier and faster to build than 3D 
models and can also be a better option in some cases, as 
they allow the creation of models that would not be easy 
to carry out in 3D when the original data are impossible 
to reconstruct. On one side, in the field of paleontology it 
is usual to rely on morphotaxa defined from scarce and 
fragmentary elements of few individuals, which means that 
it could be potentially difficult to carry out reconstructions 
in three dimensions, but not equally so in two dimensions. 
On the other side, 3D reconstructions of the fossils can be 
difficult to produce if no access is granted to digitize the 
original materials. 

Using FEA of mandibles  
to understand diet

The use of FEA to study the mechanics of mandibles and 
relating it to diet has been widely used in the last years 
(Fletcher et al. 2010, Gill et al. 2014, Gröning et al. 2011b, 
Lautenschlager et al. 2018, Marcé-Nogué et al. 2017b, 
Neenan et al. 2014, Piras et al. 2013, Püschel et al. 2018, 
Serrano-Fochs et al. 2015, Tseng & Binder 2010, Zhou et 
al. 2019). The underlying hypothesis is that under equiva-
lent loads, the stress patterns observed in the different 
FEA models can be interpreted as a sign of the relative 
strength, with specimens with higher stress being weaker. 
Therefore, the hypothesis assumes that more robust or 
stronger mandibles would be needed to process more 
demanding diets. The study of extant species has been 
fundamental to this approach, because the information of 
the dietary preferences of extant species is readily available 
hence facilitating the correlation of this information with the 
results obtained using FEA models. Some examples are 
presented here, showing how authors have used FEA to 
infer or study the dietary preferences of different mammals.
	 Figueirido et al. (2014) exclusively analyzed extant spe-
cies when comparing the results obtained in both cranial 
and mandibular FEA models of red and giant pandas, 

with the dietary differences of each one of these spe-
cies reflecting their distinct bamboo feeding preferences. 
Püschel et al. (2018) studied the sclerocarpy adaptations 
in the mandible of pitheciid primates. This was done using 
FEA models which demonstrated that there is indeed a 
relative robusticity continuum for some aspects of shape, 
but this gradient could be related to other factors rather 
than sclerocarpic specialization. Finally, Marcé-Nogué et al. 
(2017b) studied a large number of planar models of different 
primate mandibles under different loading scenarios. They 
found that there are significant differences in mandibular 
biomechanical performance depending on food categories 
and/or food hardness in Primates.
	 The understanding of dietary preferences in extant 
species enables a comparative framework with fossil taxa 
to infer dietary preferences in extinct species. This is, 
probably, one of the most widely applied aspects of FEA 
for mandible biomechanics, both using three-dimensional 
and planar models. 
	 In that sense, using planar models Fletcher et al. (2010)
tested, if mandibles of hindgut-fermenter ungulates are 
more robust than those of ruminants. They addressed the 
question, if extinct hindgut or foregut fermenters can be 
identified in the fossil record. Similarly, Serrano-Fochs et 
al. (2015) studied FEA mandible models of armadillos. The 
results of this FEA showed that omnivorous species have 
stronger mandibles than insectivorous species, and also 
that the studied fossil herbivore taxa possess very strong 
mandibles due to a great amount of oral processing.
	 Three-dimensional models of extant taxa have been 
used in several carnivores to study fossil species. For ex-
ample, Tseng & Binder (2010) compared strain distributions 
during a biting scenario between two bone-cracking eco-
morphologies that evolved convergently, Crocuta crocuta 
and Canis lupus, and the fossil Dinocrocuta gigantea. 
Kolponomos has been interpreted as an otter-like shell-
crusher based on a similar dentition. Tseng et al. (2016) 
studied different feeding strategies of extant carnivores in 
different FEA models. They tested whether there was a 
convergent morphology in the Miocene Kolponomos and 
the Pleistocene sabre-tooth felid Smilodon by using their 
anterior mandibles as anchors. The same authors stud-
ied the feeding capability of the Mio-/Pliocene giant otter 
Siamogale melilutra using FEA models of the mandible of 
different living Lutrinae to infer that the mandibular strength 
in S. melilutra strikingly surpasses molluscivores such as 
the sea otter and the Cape clawless otter (Tseng et al. 
2017).
	 In fact, the combination of both FEA models of the 
mandible and skull has been common in the study of fossil 
carnivores. Others such as Wroe et al. (2007) studied the 
extinct marsupial wolf Thylacinus cynocephalus and the 
placental grey wolf, which are commonly presented as an 
iconic example of convergence. In spite of this convergence, 
comparisons of stress distributions in the FEA models not 
only revealed considerable similarity, but also provided 
informative differences suggesting ecological overlap yet 
different prey strategies. They suggest that the grey wolf is 
better adapted to withstand the high extrinsic loads likely 
to accompany social hunting of relatively large prey. Other 
authors (Attard et al. 2011) studied the biomechanical 
performance of the skull and mandible of T. cynocephalus 
in relation to those of two extant marsupial carnivores with 

Chapter 4.  J. Marcé-Nogué:  Mandibular biomechanics



T. Martin & W. v. Koenigswald:  Mammalian Teeth – Form and Function. – München (Pfeil) 2020 – ISBN 978-3-89937-266-3

70

known diets that occurred sympatrically – the Tasmanian 
devil, Sarcophilus harrisii, and the spotted-tailed quoll, 
Dasyurus maculatus – suggesting that T. cynocephalus is 
likely to have consumed smaller prey compared to its size. 
Oldfield et al. (2012) created several FEA models of ursids 
to predict the feeding behavior of the extinct Agriotherium 
africanum. According to these authors, the findings did 
not resolve whether the fossil was more likely a predator 
or a scavenger of large terrestrial vertebrates but showed 
that it was well adapted to resist the forces generated by 
either activity. Sabre-tooths have been examined by Wroe 
et al. (2013) using FEA models to suggest that, in many 
respects, the placental Smilodon fatalis was more similar 
to the marsupial Thylacosmilus atrox than to a conical-
toothed cat. Similarly, Attard et al. (2014) used FEA models 
of marsupial carnivores to test whether the fossil species 
Nimbacinus dicksoni was more similar to its recently extinct 
relative Thylacinus or to several large living marsupials. 

This comparison in a key aspect such as feeding ecology 
suggested that it was a large-prey specialist.
	 The difficulties of comparing fossil taxa with extant 
species has driven a handful of works using FEA models 
of the mandible to study dietary preferences in extinct spe-
cies only comparing them to their extinct close relatives. 
However, the advances in computational tools to perform 
virtual reconstruction and restoration techniques of the 
original morphology of fossils (Lautenschlager 2016) allow 
the creation of accurate and realistic three-dimensional 
models. In that line, Gill et al. (2014) studied the dietary 
specializations and diversity in feeding ecology of the earli-
est stem mammals using FEA. Three-dimensional models 
of the mandible of the early mammaliaforms Morganuco­
don and Kuehneotherium were analyzed suggesting that 
the lineage split during the earliest stages of mammalian 
evolution due to ecomorphological specialization and niche 
partitioning. 
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Fig. 4.10.  Free-body and von Mises stress diagrams of armadillo mandibles with real muscular force values.  A, free-body 
diagram of a mandibular bilateral bite using a plane stress approach and;  B, von Mises stress from a finite element analysis 
of Chaetophractus villosus and Dasypus kappleri from Serrano-Fochs et al. (2015). Results using real muscular forces values.

Table 4.5.  Real muscular force values and obtained results: Bite force, mechanical advantage and strain energy of Chaetophractus 
villosus and Dasypus kappleri mandibles using a plane stress approach.

Taxon Masseter force 
(N)

Temporalis force 
(N)

Bite force 
(N)

Mechanical advantage 
(MA)

Strain energy 
(mJ)

Dasypus kappleri 31.6 45.9 15.29 0.197 6.8667
Chaetophractus villosus 90.2 46.8 34.69 0.253 4.9075

Table 4.6.  Scaled muscular force values and obtained results: Bite force, mechanical advantage and strain energy of Chaetophractus 
villosus and Dasypus kappleri mandibles using a plane stress approach.

Taxon Thickness 
(mm)

Model area 
(mm2)

Masseter  
force 
(N)

Temporalis 
force 
(N)

Bite force 
1(N)

Mechanical  
advantage 

(MA)

Strain energy 
(mJ)

Dasypus kappleri 3.51 971.37 62.0 33.2 23.22 0.244 15.54
Chaetophractus villosus 4.94 1038.90 90.2 46.8 34.69 0.253 4.9075
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Practical example B.  Finite element analyses (FEA) 
were applied to assess the lower mandible biomechanics 
of Dasypus kappleri and Chaetophractus villosus. The 
free-body diagram of the mandible, including masseter 
and temporalis muscle forces, is the same as shown in 
previous examples (Fig. 4.10). Constraints are applied in 
the bite position and the jaw joint. 
	 Reconstructed muscular force values: Firstly, we solve 
these FEA models using realistic values from muscular 
contraction in both models. The muscle forces are calcu-
lated, as explained previously, using the muscle insertion 
area and a value for the specific tension of 0.3 MPa (force 
per unit area) is assumed as muscular contraction. 
	 Using FEA we can obtain the von Mises stress patterns 
of each mandible (Fig. 4.10) and the bite forces calculated 
by the software according to the equilibrium static laws 
(Tab. 4.5). As expected, the bite forces calculated here 
are almost identical to the ones calculated before using 
the equations of lever mechanics.
	 The von Mises stress distribution is similar for both 
mandibles, with lower stress magnitudes in the ramus, 
null values in the coronoid process, and higher values of 
stress in the corpus. The mandibular corpus of D. kappleri 
is narrower than the mandibular corpus of C. villosus which 
results in higher stresses appearing in the mandibular 
corpus of D. kappleri and shows that this mandible is at a 
higher risk of fracture during chewing. Moreover, D. kappleri 

spends more strain energy during the biting. If we consider 
the strain energy as a measure of structural stiffness, 
and higher energy meaning lower stiffness (Tseng et al. 
2017), all these results are consistent with the ones from 
beam models also suggesting that C. villosus is capable to 
withstand higher bending moments than D. kappleri when 
chewing.
	 Summarizing, under the same conditions of chewing 
with the maximum isometric contraction of each muscle, 
C. villosus is capable of generating higher bite forces with 
lower stress values in the mandible. This is in line with the 
fact that D. kappleri is a generalist insectivore, whereas 
C. villosus consumes a more demanding omnivore diet.
	 Scaled muscle forces values: Secondly, we solve the 
same models by using the scaling approach for the values 
of the muscle forces. In order to compare the models, a 
scaling of the values of the forces is applied. We use the 
equations defined in Table 4.4, according to which we are 
comparing stresses in planar models using Chaetophractus 
villosus as the reference model (Tab. 4.6).
	 In this case, we assume both models have the exact 
same muscle forces applied but remove the effect of size. 
This is equivalent to the creation of two models with the 
same model area and the same values of forces. The 
results suggest a more fragile and weaker mandible for 
D. kappleri but the results are coherent with the same 
dietary conclusions.

New developments in the comparison of mammalian mandibles:  
the example of the armadillo mandible 

Quantification of FEA results

In recent years, FEA models and the respective results 
have been compared in a predominantly qualitative way, 
by comparing the stress or strain distributions. Visual 
comparison using only the stress or strain distribution of 
contour plots can be a good option when the number of 
models to compare is small and the results are distinctive 
enough between the analyzed models. For example, in 
Tseng & Binder (2010), comparison of stress distribu-
tions during a biting scenario in Crocuta crocuta, Canis 
lupus and the fossil Dinocrocuta gigantea was feasible, 
because the differences in the graphical representation of 
the von Mises stress are clearly visible and distinct from 
one another. However, when the number of models to be 
compared increases, such comparison becomes difficult 
(Neenan et al. 2014) and more rigorous quantification of 
the FEA results is useful. 
	 Quantifying stress data at specific points of a model 
has been useful in ecomorphological analyses (Attard 
et al. 2014, Fortuny et al. 2011, 2016, Piras et al. 2015, 
Serrano-Fochs et al. 2015), but to take into account the 
biomechanical behavior of the complete model, single mean 
values of stress were adopted as quantitative measurement 
to provide a metric of the relative strength of vertebrate 
structures. This approach involves computation of the von 
Mises stress averages in finite element models. In spite of 
this approach having been used in several paleobiological 
studies (Aquilina et al. 2013, Farke 2008, Figueirido et al. 
2014, Fish & Stayton 2014, Neenan et al. 2014, Parr et al. 

2012, Tseng 2009), we employed the recently proposed 
“weight-meshed values” and the “quasi-ideal meshes” to 
compute these values as adapted by Marcé-Nogué et al. 
(2016, 2017a). The latter is more robust, because it takes 
into account the effects caused by the different size of the 
individual mesh elements in a FEA model.
	 Similarly, the quantification and post-processing of the 
results of FEA models has also evolved to be combined 
with other morpho-functional methodologies such as geo-
metric morphometrics (GM). FEA and GM outputs have 
been used in mandible models to explore questions in 
functional morphology, ecomorphology, macroevolution, 
among others, by applying standard statistical methods. 
These methods involve multivariate regressions, ANOVAs 
or PLSs (Maiorino et al. 2015, Piras et al. 2013) or, even, 
GM as a tool to analyze the deformations resulting from 
FEA analyses (Gröning et al. 2011a).
	 Finally, it is worth mentioning that the influence of the 
size of the individual elements of the FEA mesh in the 
results must be always taken into account by performing 
sensitivity analysis (Tseng & Flynn 2015). To avoid the 
influence of the size of the elements in the results, an 
‘intervals’ method’ was proposed by Marcé-Nogué et al. 
(2017a), which incorporates element volumes to provide an 
additional way of quantifying and comparing FEA results, 
thus avoiding the problems with the mesh. This method 
could allow for considerably more effective comparisons of 
finite element models, and maybe more precise distinction 
between dietary traits.
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The problem of the  
maximum peak value

Maximum values of stress or strain (or peak stress/strain) 
could be potentially useful as a value to consider when 
comparing the biomechanical performance of different 
FEA models. However, peak stress and strain should 
not be taken into account because the value could be a 
numerical singularity, which is a well-known problem in 
FEA (Morris 2008).
	 This singularity could be a consequence of a bound-
ary condition or a perfect square within the geometry. A 
simply supported condition is an idealistic assumption. 
This condition has been applied specially in planar models, 
as in the examples provided by this chapter, where fixed 
displacements were imposed at the bite position and at 
the jaw joint in a simple point of the model. This condition 
creates a numerical effect that leads to the stress increasing 
without limit when the mesh is refined for both 2D and 3D 
elements. In 3D models of mandibles, simply supported 
conditions are usually applied in the bite position or in 
the jaw joint where the displacements are restrained in 
a specific area of the model. In a similar way, the perfect 
square condition is also an idealistic assumption where a 
corner with zero radius in the original geometry creates a 
stress concentration that also leads the value to increase 
without limit when the mesh is refined. To avoid artificially 
high stress magnitudes, it is not recommended to record 
the maximum stress or strain values in the whole model, 
because maximum values could be the result of singular 
high yet unrealistic magnitudes. As some authors have 
warned (e. g., Rayfield 2007), it may be difficult to assess 
the peak stresses of the model in the whole model. Some 
approaches regarding how to handle this problem are 
described in Marcé-Nogué et al. (2015). For example, this 
can be achieved by just studying the results obtained from 
an area of the model that is far enough from the artificially 
high magnitudes, or by adapting the mesh to avoid the 
visualization of this high value. Coarse meshes can avoid 
these extremely high stress values whereas very fine 
meshes can concentrate these high values in a very small 
region of the model. Finally, other authors have suggested 
to exclude elements displaying the stress or strain values 
within the top 5 % (Tseng & Flynn 2018).

Use of specific points to quantify data 

Quantifying stress or strain data at specific points has 
been useful in ecomorphological analyses of mammalian 
mandibles. An example of this can be found in Attard et al. 
(2014) who selected equidistant points along the mandible 
to measure the distribution of von Mises stress for each 
loading case and then compared them with other models. 
This approach allows us to plot these values of stress in 
a graph where one of the axes is the value of stress and 
the other one is the position from anterior to posterior 
along the mandible. 
	 This approach has also been used in combination with 
the values of von Mises stress in specific points with data 
from morphometric analysis in other vertebrate groups 
(Fortuny et al. 2011). Or in a different way, using the values 
of stress from the  specific points to plot in a dispersion 

plot of a principal component analysis (PCA) (Fortuny 
et al. 2016, Marcé-Nogué et al. 2015). Quantifying data 
from FEA models allows the use of such data to test the 
significance using statistics or other methods, opening the 
door to new methodologies to be used in combination of 
FEA. 

Case example:  armadillos

Biomechanical problem and FEA data.  Finite element 
analyses were applied to assess the lower jaw biomechan-
ics of cingulate xenarthrans in Serrano-Fochs et al. (2015). 
The main goal of this work was to make a comparative as-
sessment of the biomechanical capabilities of the mandible 
based on FEA, and to relate the obtained stress patterns 
with dietary preferences. To do this, a comparative frame-
work was created following the indications of the previous 
section of this chapter, so to solve the biomechanical 
problem described in the free-body diagram of Figure 4.11. 
The mandible was constrained at the most posterior part 
and at the condyle level of the mandibular notch following 
the procedures described in Serrano-Fochs et al. (2015) 
and Marcé-Nogué et al. (2016, 2017a).
	 Planar models of 11 armadillo mandibles (Tab. 4.1), 
each one corresponding to a different species, were cre-
ated. Two main masticatory muscles (i. e., temporalis and 
masseter) were included in the model as a vector between 
the centroid of the muscular attachment on the mandible 
and the centroid of the equivalent muscle attachment on 
the skull. To compare the models, a scaling of the values 
of the forces was applied using the equations defined in 
Table 4.4 in order to compare stresses in planar models, 
by using Chaetophractus villosus as reference model 
(Tab. 4.7).
	 Isotropic and linear elastic properties were assumed 
for the bone. In the absence of data for Cingulata or any 
other closer relative, and due to the absence of data for 
any mammalian clade with a similarly shaped mandible, the 
authors decided to apply the mandibular material properties 
of Macaca rhesus: E (elasticity modulus) = 21000 MPa and 
v (Poisson coefficient) = 0.45 (Dechow & Hylander 2000). 
The available properties of Macaca rhesus were chosen, 
provided that it has a wide range of habitats and diet which 
resembles omnivorous or generalist insectivorous diets, as 
observed in the analyzed armadillos (Richard et al. 1989).  
	 The stress distribution obtained in each armadillo is 
shown in Figure 4.12A. These stress patterns can be 
interpreted as a sign of relative strength. Assuming that 
more robust or stronger mandibles would be needed both 
for processing harder food items, insect-feeding armadillos 
(which have none or little processing in the mouth) should 
be expected to have weaker mandibles (i. e. with higher 
stress levels) than those feeding on other items, such as 
herbivorous or omnivorous species. 
	 On the other hand, differences in stress distribution 
patterns may provide a clue regarding different aspects 
of the feeding ecology of the analyzed species. The aim 
of the methods presented below is to show that using a 
comparative framework and post-processing the results 
(e. g., with specific points, mesh-weighted values, quasi-
ideal meshes or the intervals’ method) the interpretation 
of the results can be greatly improved. 
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Specific points.  In Serrano-Fochs et al. (2015) the 
strength of the mandibles was studied using the values 
of stress in eight specific points. The values of stress in 
each specific point were plotted according to the different 
dietary traits of the studied armadillos. They are classified 
as omnivores or insectivorous specialists and generalists 
(Fig. 4.12A) and a Kruskal-Wallis test was applied to check 
if there were significant differences in the results. However, 
despite the lack of significant results, some patterns ap-
pear in the boxplots for some specific points (Fig. 4.12B). 
Moreover, a principal component analysis (PCA) of the 
stress values for all specific points recorded was carried 
out using the variance-covariance matrix (Fig. 4.12C). The 
aim of these analyses was to evaluate the stress values in 
a multivariate manner and to look for diet-related patterns. 

	 The most obvious result is that in general, insectivorous 
species showed a larger variance than omnivorous species, 
and also that omnivorous species have some coincident 
stress patterns. However, the absence of significant results 
could be due to a lack of statistical power, or possibly be-
cause the selected points represent local non-significant 
regions, or the specific points were hindered by the lack 
of information about the whole FEA model.

Mesh-weighted average values and quasi-ideal mesh. 
A quantitative single measurement of the relative strength 
of the studied structure could be preferred to summarize 
the strength of the whole model. The most common ap-
proach has been the computation of the average von Mises 
stresses of the various models considered. Even though 

Table 4.7.  List of the species analyzed in the present study. The classification of each species was made on the basis of the current 
knowledge about the ecology of armadillos (see Serrano-Fochs et al., 2015 for discussion). The geometric properties and the applied 
forces by the masseter and temporalis muscles are also provided. Abbreviations preceding the names of institutions are used to 
identify the location were the specimens are housed.  AMNH, American Museum of Natural History, New York, USA;  MNCN, Museo  
Nacional de Ciencias Naturales, Madrid, Spain;  MNHN, Muséum national d’Histoire naturelle, Paris, France;  ZMB, Museum für 
Naturkunde (Zoologisches Museum), Berlin, Germany;  MLP, Museo de la Plata, La Plata, Argentina.

Taxon Diet Collection  
number

Thickness 
(mm)

Model 
area 

(mm2)

Masseter 
area  

(mm2)

Temporalis 
area  

(mm2)

Masseter 
force  
(N)

Temporalis 
force (N)

Priodontes maximus Specialist insectivore AMNH 208104 6.41 2051.70 616.02 255.06 1.29 0.53
Cabassous unicinctus Specialist insectivore MNHN 1953/457 3.51 415.75 112.08 22.91 0.37 0.08
Tolypeutes matacus Generalist insectivore AMNH 246460 3.56 497.40 157.01 64 116.00 0.35 0.14
Dasypus kappleri Generalist insectivore MNHN 1995/207 3.51 971.37 105.37 153.18 0.28 0.41
Dasypus sabanicola Generalist insectivore ZMB 85899 2.78 527.86 150.66 71 545.00 0.27 0.13
Dasypus novemcinctus Generalist insectivore AMNH 133338 2.94 613.54 225.77 92 174.00 0.32 0.13
Chlamyphorus truncatus Generalist  

insectivore-fossorial
ZMB 4321 2.00 113.19 16 035.00 34 006.00 0.04 0.09

Chaetophractus villosus Omnivore / Carnivore MNCN 2538 4.94 1038.90 300.58 156.08 0.66 0.34
Chaetophractus vellerosus Omnivore / Carnivore MLP 18.XI.99.9 3.68 538.80 145.04 117.03 0.30 0.24
Euphractus sexcinctus Omnivore / Carnivore MNHN 1917/13 5.66 1019.20 331.22 190.60 0.72 0.41
Zaedyus pichiy Omnivore / Carnivore MLP 9.XII.2.10 3.51 327.35 89 737.00 66 091.00 0.23 0.17
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vo
n 

M
is

es
 s

tr
es

s 
[M

P
a]

bite point

jaw joint

masseter insertion area

temporalis insertion area

fixed constraints

FM=90.2 N

FT=46.8 N

FM=62 N

FT=33.2 N

Fig. 4.11.  Free-body and von Mises stress diagrams of armadillo mandibles with scaled muscular force values.  A, Free-body 
diagram of a mandibular bilateral bite using a plane stress approach;  B, von Mises stress from a finite element analysis of 
Chaetophractus villosus and Dasypus kappleri from Serrano-Fochs et al. (2015). Results using scaled muscular force values.
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this approach has been used previously in paleobiological 
studies of mammalian mandibles (Figueirido et al. 2014, 
Neenan et al. 2014, Wroe et al. 2013), it represents a 
common error that should be avoided. When obtaining 
descriptive statistics from FE models, such as mean or 
median values, the problem of having non-uniform meshes 
is crucial and could lead to skewed results. For example, 
if by chance high stress values are obtained in larger ele-
ments, these high stress values will be under-represented 
because they are present in fewer elements despite the 
area with high values being large.
	 To solve this issue, Marcé-Nogué et al. (2016) proposed 
the so-called weight-meshed values, which take into ac-
count the type and size of the finite element mesh: mesh-
weighted average mean (MWAM) and mesh-weighted 
median (MWM). In the same work, Marcé-Nogué et al. 
(2016) proposed the creation of quasi-ideal meshes (QIM) 

which are meshes where all the elements have practically 
the same size. The use of QIM avoids the use of weight-
meshed corrections in the mesh, thus allowing the use of 
average values without correcting them. Moreover, with 
the use of QIM it is also proposed to use percentile values 
(e. g., 25th, 50th, 75th or 95th) as quantitative values, which 
allows to visualize the distribution of stress in each FEA 
model as a boxplot, facilitating the comparison between 
models. Moreover, and following the idea proposed by 
Walmsley et al. (2013), the use of the 95th percentile can 
be assumed as the maximum peak value to avoid the 
necessity to consider numerical singularities.
	 The arithmetic mean is calculated by summing all indi-
vidual observations or items of a sample and dividing this 
sum by the number of items in the sample. In FEA results 
of stress, the arithmetic mean (AM) would be the sum of 
the value of the von Mises stress (σVM) of each element 
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Fig. 4.12.  Von Mises stress and PCA of armadillo mandibles according to diet.  A, distribution of von Mises stress in the 11 
armadillos’ mandibles separated by diet: Omnivore/carnivore and specialist or generalist insectivore.  B, boxplots of the von 
Mises stress values for the specific points;  C, dispersion graph of the two first principal components. A hypothetical lower jaw 
is represented in each extreme of the axes, highlighting those landmarks with higher loadings in each PC (i. e., that have more 
importance in that PC) with red circles. The size of the circles approximates the standardized value of the loading. Modified 
from Serrano-Fochs et al. (2015).  Abbreviations:  P. maximus, Priodontes maximus;  C. unicinctus, Cabassous unicinctus;  T. mata­
cus, Tolypeutes matacus;  D. kappleri, Dasypus kappleri;  D. sabanicola, Dasypus sabanicola;  D. novemcinctus, Dasypus 
novemcinctus;  Ch. truncatus, Chlamyphorus truncatus;  Ch. villosus, Chaetophractus villosus;  Ch. vellerosus, Chaetophractus 
vellerosus;  E. sexcinctus, Euphractus sexcinctus;  Z. pichiy, Zaedyus pichiy.
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divided by the number of elements of the mesh (equation 
19).

		  Sn
i=0 sVM	 AM =	————	 (equation 19)		  n

The mesh-weighted arithmetic mean (MWAM) corresponds 
to the sum of the value of the von Mises stress for each 
element multiplied by its own area (A) and divided by the 
total area (equation 20). This value is equivalent to the 
division of the arithmetic mean of the product of stress and 
area by the arithmetic mean of the area, which is easier 
to calculate and does not require correction of weight 
element by element.

				    Sn
i=0 (s i

VM · Ai)				   ——————		    Sn
i=0 (s i

VM · Ai)		  n		  AM(s i
VM · Ai)	 MWAM =	——————	=	——————	=	——————

		  Sn
i=0 Ai		   Sn

i=0 Ai		  AM (Ai)				    ———					    n	
(equation 20)

The median is the middle measurement of any set of 
sorted data. In the case of FEA, the median would be the 
value separating the higher half from the lower half of the 
values of von Mises stress recorded in each element of 
the mesh after they have been ordered.
	 Here the mesh-weighted median (MWM) of stress 
distribution has been defined as the division of the median 
of the product of stress and area by the median of the 
area (equation 21), based on the formulation presented 
in equation 20.

		   median (s i
VM · Ai)

	 MWM =	———————	 (equation 21)
		  median (Ai)

Two indicators were proposed to evaluate whether a mesh 
is uniform enough to use the raw stress data for statisti-
cal analysis: the percentage error of the arithmetic mean 
(PEofAM) and the percentage error of the median (PEofM). 
These two indicators evaluate the difference between the 
non-weighted value and the weighted value of mean and 
median (PEofAM in equation 22 and PEofM in equation 23),

		  	MWAM - AM	
	 PEofAM =		———————		× 100	 (equation 22)
		  	  MWAM	 

		  	 MWM - M	
	 PEofM =		—————		× 100	 (equation 23)
		  	  MWM	 

If the mesh of the model is close to an ideal fine uniform 
mesh, the non-weighted and the weighted indicators should 
be equal. If the error is lower than a certain threshold, the 
mesh can be considered a QIM, and quantitative and sta-
tistical analysis of the FEA data can be computed without 
any corrections and e. g., the percentile values 25th, 50th, 
75th and 95th can be computed.
	 When this approach was used to analyze the armadillo 
mandibles, the significant differences among different diets 
found in the statistical analyses were more conclusive than 
the results obtained when analyzing stress values at a few 
specific points (Serrano-Fochs et al. 2015). This supports 
the analysis of the stress values of the whole specimen 
rather than focusing on just a few isolated points. An 
alternative would be to use both sources of information 
as isolated points, which could give an alternative view of 
some specific areas. 
	 Statistics showed significant results when comparing 
omnivore and insectivore species (Tab. 4.8). However, 
this significance should be interpreted as illustrative more 
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Fig. 4.13.  Von Mises stress and PCA of armadillo mandibles under assumption of quasi-ideal meshes.  A, boxplots of von 
Mises stress distributions when quasi-ideal meshes (QIM) are assumed for the Cingulata mandibles analyzed;  B, PCA based 
on the correlation matrix. The loadings for each variable are colored according with the range of stress they represent, with 
reddish colors for high level of stress, and bluish for low levels. X-axis: PC1. Y-axis: PC2. Modified from Marcé-Nogué et al. 
(2016, 2017a).  Abbreviations:  P. maximus, Priodontes maximus;  C. unicinctus, Cabassous unicinctus;  T. matacus, Tolypeutes 
matacus;  D. kappleri, Dasypus kappleri;  D. sabanicola, Dasypus sabanicola;  D. novemcinctus, Dasypus novemcinctus;  Ch. trun­
catus, Chlamyphorus truncatus;  Ch. villosus, Chaetophractus villosus;  Ch. vellerosus, Chaetophractus vellerosus;  E. sexcinc­
tus, Euphractus sexcinctus;  Z. pichiy, Zaedyus pichiy.
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than fully conclusive. This is because when a Bonferroni 
correction was applied, the mean values between special-
ized insectivores and omnivores are non-significant (most 
probably due to the small sample size of the specialist 
insectivores).

Intervals’ method.  In Marcé-Nogué et al. (2017a), a new 
method was proposed, named the intervals’ method, that 
can be used to analyze data from finite element models 
in a comparative multivariate framework. As a case study, 
several armadillo mandibles were analyzed with success, 
showing that the proposed method was useful to distin-
guish and characterize biomechanical differences related 
to diet/ecomorphology.
	 This so-called intervals’ method consists of generating 
a set of variables, each one defined by an interval of stress 
values. Each variable is expressed as a percentage of the 
area (in planar models) or the volume (in 3D models) of 
the mandible occupied by those stress values. Once all 
the stress values of a single specimen are obtained, they 
can be subdivided into different intervals, each one of them 
representing the amount of area in percent values of the 
original model having a specific range of stress values.
	 Afterwards these newly generated variables can be 
analyzed using multivariate methods. The use of this new 
method in the FEA models of cingulate mandibles allowed 
us to positively discriminate between specialist and gener-
alist species of insectivores, which was not possible with 
the approaches defined above. The method described in 
Marcé-Nogué et al. (2017a) requires the definition of certain 
parameters such as a fixed upper threshold (FTupper) and a 
specific number of intervals N. For example, in this work, 
FTupper = 0.1 MPa and N = 50. This value is assumed based 
on the convergence procedure defined in Marcé-Nogué et 
al. (2017a), when the results of the regressions of the PCs 
indicate that the scores are almost completely correlated.
	 We carried out a PCA using the variance-covariance 
matrix (Fig. 4.13). The PCA of the correlation matrix 
successfully distinguishes the main three diets, with 
omnivore-carnivore species on lower-left area of the plot. 
PC2 separates specialist insectivores from the rest of 
species, while Chlamyphorus truncatus (i. e., a generalist 
insectivorous species exhibiting a very particular diet due 
to its completely fossorial lifestyle) is located near the 
omnivore/carnivore species in the negative part of the PC1 
and PC2. Within this PCA, omnivore/carnivore species 
were characterized by very low stress values (lower-left 

quadrant of the plot), whilst generalist insectivores showed 
a proportionally larger area of intermediate stress values 
than the rest of the species. Specialist insectivores have 
proportionally larger areas of high stress.

Further usage of quantification  
of stress

Once we have quantified our models using specific points, 
average values or percentiles from a QIM or applying the 
intervals’ method, we can use different ideas and methods 
to organize our data. On one hand, values of specific points, 
scalar values from the models (such as strain energy) 
and the mesh-weighted proposed averages values can 
be used for the comparison of models and their behavior. 
On the other hand, the intervals’ method or the use of the 
stress quartiles are a good approach to check similarities 
between models.
	 Scalar values from the FEA models such as the strain 
energy were used to compare with other scalar values 
such as the mechanical advantage (Tseng et al. 2016) or 
used in regression with other values such as the volume 
of the model to check for allometry (Tseng et al. 2017).
	 Average values were used to compare different dietary 
traits and hardness of ingesta in planar FEA models of 
extant primates (Marcé-Nogué et al. 2017b), showing that 
there is a strong association between mandibular biome-
chanical performance, mandibular form, food hardness, 
and diet categories. The same work (Marcé-Nogué et al. 
2017b) used average values to estimate the ancestral 
states for internal nodes using maximum likelihood and 
then by interpolating the states along the branches of the 
phylogeny. This approach was applied to get insights about 
the possible evolution of mandibular stiffness.
	 Finally, it is worth mentioning that the use of the differ-
ent percentile values as a unique set of multivariate data, 
the average values or the powerful intervals’ method, are 
all opening a window of opportunity for post-processing 
FEA-derived data. Using these kinds of data allows the 
application of multivariate analysis, and they can even be 
used to run machine learning algorithms in order to infer 
dietary preferences of fossil taxa from the data of living 
species. Both supervised (Marcé-Nogué et al. 2020) and 
unsupervised (Zhou et al. 2019) algorithms can be used 
to study mandibular biomechanics and its relationship with 
diet. 

Table 4.8.  Statistics for the Kruskal-Wallis test: mesh-weighted arithmetic mean (MWAM), and mesh-weighted median (MWM).

Kruskall-Wallis p-value

Pairwise test p-value: Bonferroni non-corrected/corrected

Specialist insectivore  
vs. generalist insectivore

Specialist insectivore  
vs. omnivore

Generalist insectivore  
vs. omnivore

MWAM 0.0089 0.8197 / 1 0.0369 / 0.1107 0.0058 / 0.0173
MWM 0.0081 0.5676 / 1 0.0358 / 0.1073 0.0057 / 0.0170
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