New species and records of Beardius Reiss \& Sublette from Brazil

(Diptera, Chironomidae)
Luiz Carlos de Pinho, Humberto Fonseca Mendes \& Trond Andersen

Pinho, L. C., H. F. Mendes \& T. Andersen (2009): New species and records of Beardius Reiss \& Sublette from Brazil (Diptera, Chironomidae). - Spixiana 32/2: 255-264

Two new species of Beardius Reiss et Sublette, 1985 from Brazil are described and figured, B. fittkaui spec. nov. as male and pupae and B. urupeatan spec. nov. as male only. A new record of B. cristhinae Trivinho-Strixino \& Siqueira, 2007 from the Mato Grosso State is given. Keys to males, larvae and pupae are provided.

Luiz Carlos de Pinho, Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, n. 3900, CEP 14040-901, Ribeirão Preto - SP, Brazil; e-mail: lcpinho@pg.ffclrp.usp.br

Humberto Fonseca Mendes \& Trond Andersen, The Natural History Collections, Bergen Museum, University of Bergen, Muséplass 3, N-5020 Bergen, Norway; e-mail: humberto.mendes@bm.uib.no, trond.andersen@zmb.uib.no

Introduction

The genus Beardius was erected by Reiss \& Sublette (1985) based on three new species, B. parcus from Venezuela and Brazil, B. breviculus from Panama, and B. truncatus from Texas, USA. Later, Andersen \& Sæther (1996) described three new species, B. aciculatus from Costa Rica and Mexico, B. lingulatus and B. triangulatus from Costa Rica; Jacobsen \& Perry (2000) one new species, B. reissi Jacobsen from Florida, USA; Trivinho-Strixino \& Strixino (2000) two new species, B. phytophilus and B. xylophilus from Brazil; and Trivinho-Strixino \& Siqueira (2007) two more new species, B. cristhinae and B. roquei from Brazil. The genus thus comprises 11 species, all distributed in South and Central America or in the southern parts of USA. The larvae are associated with macrophytes or submerged wood in both standing and flowing waters (Jacobsen \& Perry 2000, Trivinho-Strixino \& Strixino 2000).

Recently we borrowed the Beardius material housed in the Zoologische Staatssammlung, Munich. Most of this material was collected by Ernst J. Fittkau during his expeditions to the Amazon in the 1960s. In the material we found two new species, which
are described and figured below. We also have additional material of one of these species from Acre State in the Amazon area and from São Paulo and Santa Catarina States in southeastern and southern Brazil. In addition, the material contained one male of B. cristhinae from Mato Grosso State, a species which was recently described from São Paulo State in southeastern Brazil (Trivinho-Strixino \& Siqueira 2007).

Material and methods

The specimens were mounted on slides in Euparal ${ }^{\circledR}$ following the procedure outlined by Sæther (1969). The general terminology and abbreviations follow Sæther (1980). Measurements are given as ranges, followed by the mean when more than three specimens were measured, followed by the number of specimens measured in parenthesis.

Pencil drawings were made using a Nikon microscope with drawing tube. The caudal and lateral views of the hypopygium were drawn based on temporary slides in 85% glycerol. The drawings of the hypopygia were later inked and assembled in Adobe Photoshop 7^{\circledR}. The remaining illustrations were made using the software Adobe Illustrator CS2 ${ }^{\circledR}$.

The holotype and some paratypes of B. urupeatan spec. nov. will be deposited in the Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil (MZSP), other paratypes are in the Zoologische Staatssammlung, Munich, Germany (ZSM), and the Natural History Collections, Bergen Museum, Norway (ZMBN). The holotype and some paratypes of B. fittkaui spec. nov. will be returned to ZSM, one paratype will be housed in ZMBN and another in MZSP.

Key to males of Beardius Reiss \& Sublette

In Andersen \& Sæther (1996) the figures of B. triangulatus and B. lingulatus were switched; in the key below this mistake is corrected.

1. Median volsella low, with 3-12 strong, stout setae
2.

- Median volsella well developed, needle-like to triangular or tongue-shaped, with setae and/or microtrichia 4.

2. Superior volsella fused basally with inferior volsella. BRAZIL (Trivinho-Strixino \& Siqueira 2007, Fig. 1).
...........B. cristhinae Trivinho-Strixino \& Siqueira

- Superior volsella not fused with inferior volsella. 3.

3. Anal point well developed, triangular; acrostichals 13-16; tergal bands prominent. BRAZIL (Trivinho-Strixino \& Siqueira 2007, Figs 6-7).....B. roquei Trivinho-Strixino \& Siqueira

- Anal point absent, but posterior edge of tergite IX with small prominence; acrostichals absent; tergal bands absent. BRAZIL (Trivinho-Strixino \& Strixino 2000, Figs 1-4).
........B. phytophilus Trivinho-Strixino \& Strixino

4. Median volsella needle-like, without microtrichia, with one seta; scutal tubercle prominent, rounded. COSTA RICA (Andersen \& Sæther 1996, Figs 3a-f)
B. aciculatus Andersen \& Sæther

- Median volsella digitiform to conical or broad, tongue-shaped to triangular, with microtrichia, with or without setae; scutal tubercle low or absent 5.

5. Superior volsella pediform; inferior volsella with broad base; tergite IX with or without setae... 6.

- Superior volsella digitiform; inferior volsella with narrow base; tergite IX without setae.... 7 .

6. Median volsella triangular, with 10-15 long, apical setae; inferior volsella without knob-like
apex, sensilla chaetica slender; tergite IX with setae; vein R without setae; acrostichals absent. MEXICO, VENEZUELA, BRAZIL (Reiss \& Sublette 1985, Figs 1-14)
B. parcus Reiss \& Sublette

- Median volsella short, cylindrical to coronate, with 4-6 apical setae; inferior volsella with enlarged knob-like apex, sensilla chaetica stout; tergite IX without setae; vein R with $4-8$ setae; acrostichals 3-6. USA (Jacobsen \& Perry 2000, Fig. 1a-c, e).
B. reissi Jacobsen

7. Anal point present 8.

- Anal point absent 9.

8. Anal point triangular, well developed, projecting beyond edge of tergite IX; median volsella digitiform, with more than 30 strong setae. BRAZIL (Trivinho-Strixino \& Strixino 2000, Figs 13-16)B. xylophilus Trivinho-Strixino \& Strixino

- Anal point small, not projecting beyond edge of tergite IX; median volsella broad, bluntly triangular, with 2-3 apical setae. BRAZIL (Figs 1-5)
B. fittkaui spec. nov.

9. Median volsella conical with coarse microtrichia; R, R_{1} and R_{4+5} all with setae; acrostichals 1-6. USA (Reiss \& Sublette 1985, Fig. 27) \qquad
B. truncatus Reiss \& Sublette

- Median volsella triangular or tongue-shaped, with weak, often short microtrichia; at most R and R_{4+5} with setae; acrostichals absent 10.

10. Median volsella triangular with pointed apex .. 11.

- Median volsella with broad apex, rounded or straight in dorsal view 12.

11. AR about 0.5 ; apical microtrichia of median volsella comparatively long. COSTA RICA (Andersen \& Sæther 1996, Figs 5a-e) \qquad
B. triangulatus Andersen \& Sæther

- AR about 1.3; apical microtrichia of median volsella very fine and short. PANAMA (Reiss \& Sublette 1985, Figs 28-29)
B. breviculus Reiss \& Sublette

12. Median volsella thick, in lateral view with apex projecting ventrad; inferior volsella slender, slightly clavate, nearly straight; tergal bands present. BRAZIL (Figs 12-19)
B. urupeatan spec. nov.

- Median volsella thin, tongue-shaped; inferior volsella clavate, strongly curved; tergal bands absent. COSTA RICA (Andersen \& Sæther 1996, Figs 4a-e)........ B. lingulatus Andersen \& Sæther

Figs 1-5. Beardius fittkaui spec. nov., male. 1. Tentorium, stipes and cibarial pump. 2. Thorax. 3. Wing. 4. Anal point and tegite IX and dorsal aspect of left gonocoxite and gonostylus. 5. Hypopygium with anal point and tergite IX removed, left dorsal aspect, right ventral aspect.

Key to pupae of Beardius Reiss \& Sublette

The key is modified from Jacobsen \& Perry (2000). The pupae of B. aciculatus, B. lingulatus, B. urupeatan spec. nov., B. triangulatus and B. xylophilus are unknown. The description of the pupa of B. phytophilus given by Trivinho-Strixino \& Strixino (2000) is not detailed enough to enable us to include the species in the key.

1. Tergite II shagreen points strong and uniform throughout. .2.

- Tergite II with shagreen points stronger in anterior transverse band. 3.

2. Abdominal segment V with 4 taeniate lateral setae; conjunctive I/II with median patch of fine spinules; hook row of 46-73 hooklets (Jacobsen \& Perry 2000, Figs 3a, c,e,g)
B. truncatus Reiss \& Sublette

- Abdominal segment V with 3 taeniate lateral setae; conjunctive I/II bare; hook row of 30-44 hooklets (Jacobsen \& Perry 2000, Figs 3b,d,f, as Beardius sp. B; see Epler 2001)
B. breviculus Reiss \& Sublette

3. Paratergite VIII with strong spines along lateral margin anterior to spur; basal ring of thoracic horn elliptical; anterior branch of thoracic horn with subapical spinules
.4.

- Paratergite VIII with tiny spinules along lateral margin anterior to spur; basal ring of thoracic horn subcircular; anterior branch of thoracic horn smooth (Reiss \& Sublette 1985, Figs 15-20)
B. parcus Reiss \& Sublette

4. Tergites VII-VIII with fine shagreen points in two distinct patches; paratergite VI with single posterior patch of fine spinules (Trivinho-Strixino \& Siqueira 2007, Figs 8-12)
B. roquei Trivinho-Strixino \& Siqueira

- Tergites VII-VIII bare; paratergite VI bare 5.

5. Paratergite V with spinules distributed from base of L1 setae almost to posterior margin; tergite VI with anterior transverse band of strong shagreen points (Jacobsen \& Perry 2000, Figs 2a-h) . B. reissi Jacobsen

- Paratergite V with spinules restricted to posterior margin; tergite VI with gradually weaker shagreen points reaching middle of tergite ... 6 .

6. Conjunctive IV/V with spinules separated in two patches (Trivinho-Strixino \& Siqueira 2007, Figs 2-5)
B. cristhinae Trivinho-Strixino \& Siqueira

- Conjunctive IV/V with single patch of spinules (Figs 6-11) B. fittkaui spec. nov.

Key to larvae of Beardius Reiss \& Sublette

The key is modified from Jacobsen \& Perry (2000). The larvae of B. aciculatus, B. breviculus, B. cristhinae, B. fittkaui spec. nov., B. lingulatus, B. urupeatan spec. nov., B. roquei and B. triangulatus are unknown. Based on the descriptions we are not able to separate the larvae of B. truncatus (see Epler 2001) and B. phytophilus (see Trivinho-Strixino \& Strixino 2000), and we thus key out both species in couplet 3 .

1. Antenna with 7 segments, segments $2-4$ can be only partially separated
. 2.

- Antenna with 5 or 6 segments.......................... 3.

2. Clypeus distinct from frontal apotome; ventromental plates separated by a distance about equal to width of pale median tooth of mentum; procercus with 8 anal setae; AR 0.87-1.05 (Reiss \& Sublette 1985, Figs 21-25)
B. parcus Reiss \& Sublette

- Clypeus fused with frontoclypeal apotome; ventromental plates separated by about twice the width of pale median tooth of mentum; procercus with 7 anal setae; AR 0.70-0.79 (Jacobsen \& Perry 2000, Figs 5, 6d)
B. sp. C. Jacobsen

3. Antenna with 5 segments

USA (Epler 2001, Fig. p. 8.36)
B. truncatus Reiss \& Sublette

BRAZIL (Trivinho-Strixino \& Strixino 2000, Figs 6-12)
........ B. phytophilus Trivinho-Strixino \& Strixino

- Antenna with 6 segments. 4.

4. Antennal blade as long as flagellum; seta subdentalis reaching first inner tooth of mandible (Jacobsen \& Perry 2000, Figs 2e-h)
B. reissi Jacobsen

- Antennal blade longer than flagellum; seta subdentalis reaching second inner tooth of mandible (Trivinho-Strixino \& Strixino 2000, Figs 17-23)B. xylophilus Trivinho-Strixino \& Strixino

Beardius fittkaui, spec. nov.

Figs 1-11

Types. Holotype: ô with pupal exuviae, BRAZIL, Amazonas State, River Marauia, "Gebiet Endstation, Bergbach II", locality A 500, 26-27.i.1963, E. J. Fittkau.

Figs 6-11. Beardius fittkaui spec. nov., pupa. 6. Frontal apotome. 7. Thoracic horn. 8. Basal ring of thoracic horn and precorneal seta. 9. Thorax. 10. Tergites I-VI. 11. Tergites VII-VIII and anal lobe.
 350 m über dem Meeresspiegel, schattig, starkes Gefälle über Granitblöcken", 26.i.1963, light trap (ZSM, MZSP, ZMBN).

Diagnostic characters. See keys.

Description

Male ($\mathrm{n}=4-6$, except when otherwise stated).
Total length 2.08-2.40 (3) mm. Wing length 1.10$1.23,1.16 \mathrm{~mm}$. Total length/wing length 2.08-2.40 (3). Wing length/length of profemur 1.89-2.05, 1.94. Head, abdomen and legs pale, thorax pale brown.

Head. Antennae with 13 flagellomeres; ultimate flagellomere 770-1060, $910 \mu \mathrm{~m}$ long; AR 0.79-1.03, 0.93 . Temporals 8 (2). Clypeus with 11-19, 15 setae. Cibarial pump, tentorium and stipes as in Figure 1; tentorium 350 (1) $\mu \mathrm{m}$ long, 111 (1) $\mu \mathrm{m}$ wide; stipes 414 (1) $\mu \mathrm{m}$ long. Palp segment lengths (in $\mu \mathrm{m}$): 20-30, 27; 23-30, 25; 69-123, 100; 95-130, 110; 136-193, 156. Third palpomer with 2-3 subapical sensilla clavata $9-14,12 \mu \mathrm{~m}$ long.

Thorax (Fig. 2). Antepronotum without setae; acrostichals 4-6, 5; dorsocentrals 4-6, 5; prealars 2. Scutellum with 4-6, 6 setae.

Wing (Fig. 3). VR 1.24-1.45, 1.36. R_{2+3} ending closer to R_{4+5} than to R_{1}. Brachiolum with 2 setae; R with 5-8, 6 setae; R_{4+5} with 9-17, 13 setae; remaining veins bare.

Legs. Spur of foretibia 74-101, $84 \mu \mathrm{~m}$ long; of midtibia 101-138, $114 \mu \mathrm{~m}$; of hind tibia 101-138, $118 \mu \mathrm{~m}$ long. Width at apex of foretibia 83-101, $95 \mu \mathrm{~m}$; of midtibia $92-111,97 \mu \mathrm{~m}$; of hind tibia $92-120$, $107 \mu \mathrm{~m}$. Lengths (in $\mu \mathrm{m}$) and proportions of legs as in Table 1.

Hypopygium (Figs 4-5). Anal point 18-28, $22 \mu \mathrm{~m}$ long, 28-37, $30 \mu \mathrm{~m}$ wide; anal tergum without setae, tergal bands present. Laterosternite IX with 2-3, 2 setae. Phallapodeme 129-230, $183 \mu \mathrm{~m}$ long. Transverse sternapodeme 101-175, $131 \mu \mathrm{~m}$ long. Gonocoxite 258-378, $338 \mu \mathrm{~m}$ long. Superior volsella digitiform; 157-175, $161 \mu \mathrm{~m}$ long; 46-55, $50 \mu \mathrm{~m}$ wide at base; 45$47,46 \mu \mathrm{~m}$ wide at apex; with $5-10,7$ dorsal and 3-5, 4
ventral setae; with microtrichia in basal half. Inferior volsella curved, clavate; 193-267, $235 \mu \mathrm{~m}$ long; 27-29, $28 \mu \mathrm{~m}$ wide at base; $37-55,51 \mu \mathrm{~m}$ wide at apex; with 2 apical, thin setae and 7-8, 7 stout, apically dissected setae. Median volsella subtriangular with broadly rounded apex; 74-157, $116 \mu \mathrm{~m}$ long; 74-157, $106 \mu \mathrm{~m}$ wide at base; $37-46,39 \mu \mathrm{~m}$ wide at apex; with 2-3, 3 strong setae, longest 37 (2) $\mu \mathrm{m}$. Gonostylus 368-424, $405 \mu \mathrm{~m}$ long. HR 5.61-8.29, 7.71; HV 5.63-7.02, 5.90.

Pupa ($\mathrm{n}=1$).

Total length 2.95 mm . Cephalothorax and abdomen transparent.

Cephalothorax. Frontal apotome conical (Fig. 6), frontal seta $32 \mu \mathrm{~m}$ long. Precorneal seta 1 (Fig. 8), $9 \mu \mathrm{~m}$ long. Thoracic horn with at least 6 branches; stout anterior branch with spinules in distal $2 / 3$ (Fig. 7); basal ring elliptical (Fig. 8). Dorsocentrals $7-14,11 \mu \mathrm{~m}$ long (Fig. 9); distance between Dc_{1} and $\mathrm{Dc}_{2} 5 \mu \mathrm{~m}$; between Dc_{2} and $\mathrm{Dc}_{3} 109 \mu \mathrm{~m}$; between Dc_{3} and $\mathrm{Dc}_{4} 16 \mu \mathrm{~m}$. Prealars absent.

Abdomen (Figs 10-11). Tergites I, VII, and VIII without shagreen; T II-VI with anterior transverse bands of spinules stronger than posteriorly contiguous shagreen; posterior bands of spinules gradually narrower from T III to T VI. Conjunctive IV/V with single patch of spinules. Paratergite V with few spinules along posterior margin. Pedes spurii A and pedes spurii B present. Setation: segment I without L setae; II with 2 L setae; III-V with 3 L setae, VI-VIII with 4 LS setae. Segment VIII with 4 dark, curved, lateral spines 14-23, $18 \mu \mathrm{~m}$ long; spur single, $9 \mu \mathrm{~m}$ long. Anal lobe $162 \mu \mathrm{~m}$ long, with 15 taeniate setae. Genital sac overreaching apex of anal lobe by $76 \mu \mathrm{~m}$.

Female and larva. Unknown.
Etymology. Named in honor of Dr. Ernst J. Fittkau, who collected the specimens, and for his great contribution to the knowledge of Neotropical chironomids.

Distribution. Known only from the type locality, Rio Marauia in Amazonas State, Brazil.

Tab. 1. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Beardius fittkaui, spec. nov., male ($\mathrm{n}=4-6$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}
p_{1}	$461-608,543$	$359-488,410$	$737-902,790$	$350-415,373$	$295-359,317$	$221-276,242$
p_{2}	$461-672,574$	$368-516,442$	$267-414,341$	$138-193,164$	$111-138,123$	$46-82,64$
p_{3}	$525-727,622$	$424-599,507$	$286-507,418$	$175-240,229$	$111-212,172$	$74-111,94$
	ta_{5}	LR	BV	SV	BR	
p_{1}	$83-92,90$	$1.80-1.87,1.84$	$1.72-1.77,1.75$	$1.21-1.33,1.27$	$1.7-3.2,2.3$	
p_{2}	$32-37,36$	$0.72-0.82,0.77$	$3.21-3.73,3.50$	$2.87-3.14,2.99$	$3.0-6.2,4.9$	
p_{3}	$37-46,42$	$0.67-0.85,0.82$	$2.76-3.12,2.89$	$2.56-3.32,2.74$	$3.4-6.6,4.4$	

Figs 12-15. Beardius urupeatan spec. nov., male. 12. Head. 13. Tentorium, stipes and cibarial pump. 14. Thorax. 15. Wing.

Beardius urupeatan, spec. nov.

Figs 12-19
Type material. Holotype: $\begin{gathered}\text { ® } \\ \text { BRAZIL: Acre State, Man- }\end{gathered}$ cio Lima, Parque Nacional da Serra do Divisor, "Igarapé" Ar Condicionado, 17.iii.06, light trap, A. R. Calor (MZSP). Paratypes: 10 , as holotype; $5 \delta^{\circ} \hat{\sigma}^{\circ}$, as holotype except: "Igarapé" Amor; 20̊す, Amazonas State, River Tonantins, Villa Nova, 29-30.viii.1961, E. J. Fittkau; 20̊す, São Paulo State, Salesópolis, Estação Biológica Boracéia, 2nd bridge over River Claro, $23^{\circ} 39^{\prime} 02^{\prime \prime} \mathrm{S} 45^{\circ} 54^{\prime} 43^{\prime \prime} \mathrm{W}$, 815 m a.s.l., 8.xii.2005, light trap, C. G. Froehlich et al.; 10, São Paulo State, Salesópolis, Estação Biológica Boracéia, Stream Venerando, 12.xii.2001, light trap, C. G. Froehlich et al.; 1ठ̃, São Paulo State, Salesópolis, Estação Biológica Boracéia, Poço Verde, 13.xii.2001, light trap, H. F. Mendes; $2 \widehat{o ̛}^{0}$, São Paulo State, Salesópolis, Estação Biológica Boracéia, River Claro, 8.xii.2005, light trap, H. F. Mendes; 10̂, São Paulo State, Cubatão, Parque Estadual da Serra do Mar, Núcleo Cubatão, $23^{\circ} 54^{\prime} 155^{\prime \prime} \mathrm{S}$ $46^{\circ} 28^{\prime} 50^{\prime \prime} \mathrm{W}$, 4.xii.2003, F. O. Roque; 10 ${ }^{\circ}$, Santa Catarina State, Florianópolis, Ratones, $27^{\circ} 30^{\prime} 66^{\prime \prime} \mathrm{S} 48^{\circ} 29^{\prime} 22^{\prime \prime} \mathrm{W}$, 50 m a.s.1., 26.xii.2006, light trap near stream, L. C. Pinho (MZSP, ZSM, ZMBN).

Diagnostic characters. See key.

Description

Male ($n=10-16$, except when otherwise stated).
Total length $2.32-3.16,2.71 \mathrm{~mm}$. Wing length 1.11-1.67, 1.34 mm . Total length/wing length $1.82-$ 2.16, 1.99. Wing length/length of profemur 1.88-2.66, 2.11. Coloration: head, abdomen and legs pale, thorax pale brown.

Head. (Fig. 12) Antennae with 13 flagellomeres; ultimate flagellomere 414-599, $453 \mu \mathrm{~m}$ long; AR 1.09-1.32, 1.20. Temporals 8-13, 10. Clypeus with 9-14, 11 setae. Cibarial pump, tentorium and stipes as in Figure 13; tentorium 64-125, $83 \mu \mathrm{~m}$ long, 1123, $18 \mu \mathrm{~m}$ wide; stipes $79-118,99$ (8) $\mu \mathrm{m}$ long. Palp segment lengths (in $\mu \mathrm{m}$): 18-36, 24; 22-39, 27; 61-106, 77; 68-122, 90; 86-191, 130. Third palpomer with 2 subapical sensilla clavata, longest 9-23, $15 \mu \mathrm{~m}$ long.

Thorax (Fig. 14). Antepronotum without setae; acrostichals absent; dorsocentrals 4-8, 6; prealars 2. Scutellum with 2-6, 4 setae.

Wing (Fig. 15). VR 1.35-1.60, 1.41. R_{2+3} ending midway between R_{1} and R_{4+5}. Brachiolum with 2 setae; R with 2-7, 4 setae; R_{4+5} with 1-3, 2 setae apically; remaining veins bare.

Tab. 2. Lengths (in $\mu \mathrm{m}$) and proportions of legs of Beardius urupeatan, spec. nov., male ($\mathrm{n}=9-16$).

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}
p_{1}	$451-765,590$	$322-497,407$	$773-1105,876$	$350-497,421$	$294-442,358$	$221-322,260$
p_{2}	$553-783,642$	$378-580,489$	$313-461,368$	$147-211,181$	$111-147,128$	$55-83,69$
p_{3}	$571-903,707$	$442-700,557$	$442-608,522$	$221-341,277$	$166-249,209$	$83-129,106$
	ta_{5}	LR	BV	SV	BR	
p_{1}	$83-120,95$	$1.89-2.33,2.10$	$1.46-1.76,1.54$	$1.08-1.26,1.17$	$2.2-5.7,3.0$	
p_{2}	$27-46,35$	$0.65-0.83,0.74$	$3.38-4.00,3.67$	$2.83-3.59,3.11$	$2.7-7.5,4.3$	
p_{3}	$28-55,45$	$0.85-1.05,0.93$	$2.64-2.93,2.84$	$2.22-2.67,2.44$	$2.8-6.8,5.1$	

Legs. Spur of foretibia 36-50, $41 \mu \mathrm{~m}$ long; of midtibia 54-72, $61 \mu \mathrm{~m}$; of hind tibia 54-72, $62 \mu \mathrm{~m}$ long. Width at apex of foretibia 29-50, $38 \mu \mathrm{~m}$; of midtibia 32-47, $39 \mu \mathrm{~m}$; of hind tibia 36-50, $42 \mu \mathrm{~m}$. Lengths (in $\mu \mathrm{m})$ and proportions of legs as in Table 2.

Hypopygium (Figs 16-19). Anal point absent; anal tergum without setae, tergal bands present. Laterosternite IX with 2-3, 2 setae. Phallapodeme 129-230, $183 \mu \mathrm{~m}$ long. Transverse sternapodeme 27-43, $36 \mu \mathrm{~m}$ long. Gonocoxite 68-109, $88 \mu \mathrm{~m}$ long. Superior volsella digitiform, without microtrichia; 36-59, $49 \mu \mathrm{~m}$ long; 9-12, $11 \mu \mathrm{~m}$ wide at base; 9-12, $10 \mu \mathrm{~m}$ wide at apex; with 2-8, 4 dorsal setae and 3-6, 4 ventral setae. Inferior volsella slender, 5789, $75 \mu \mathrm{~m}$ long; 5-7, $5 \mu \mathrm{~m}$ wide at base; $7-14,9 \mu \mathrm{~m}$ wide at apex; with 3-4, 4 apical, thin setae. Median volsella 18-34, $23 \mu \mathrm{~m}$ long; 18-30, $24 \mu \mathrm{~m}$ wide at base; without setae; in dorsal view subrectangular with straight posterior margin; in lateral view with apex projecting ventrad, with slightly concave posterior margin; in caudal view large, rounded. Gonostylus 83-132, $110 \mu \mathrm{~m}$ long. HR 0.69-0.88, 0.80; HV 0.53-0.68, 0.61.

Female and immature stages. Unknown.
Etymology. From the Guarani Mbyá term "urupe atã", meaning bracket fungus, referring to the shape of the median volsella. For euphony the name is written urupeatan. It is to be treated as a noun in apposition.

Distribution and ecology. Known from both the Amazon Region (Parque Nacional Serra do Divisor in Acre State, and Tonantins River in Amazonas

Tab. 3. Lengths (in mm) and proportion of Beardius urupeatan, spec. nov., males from the Amazon and the Atlantic rainforests.

	Amazon Rainforest	Atlantic Rainforest
Total length	$2.32-2.51,2.38(6)$	$2.68-3.00,2.96(8)$
Wing length	$1.11-1.21,1.17(7)$	$1.47-1.67,1.52(7)$
Antennal ratio	$1.10-1.26,1.16(7)$	$1.12-1.33,1.24(7)$

State) and the Atlantic Rainforest (Estação Biológica Boracéia and Parque Estadual da Serra do Mar in São Paulo State, and Florianópolis in Santa Catarina State). The material from the Atlantic Rainforest was collected in light traps close to low-order streams. As macrophytes were lacking close to the collecting sites, while submerged wood was abundant, the larva is expected to inhabit submerged wood.

Remarks. Some variation was observed between the specimens from the Amazon Region and those from the Atlantic Rainforest, mainly regarding body size (Table 3). These differences might be due to the higher temperature in the Amazon Region when compared to the localities in the southern parts of the Atlantic Rainforest. Populations of chironomid species inhabiting different habitats may show variation in voltinism (see, e.g., Tokeshi 1995), and more rapid growth can result in smaller body size. We therefore consider the size differences observed as intraspecific variation.

Due to the transverse orientation of the median volsella in relation to the gonocoxite, the dorsal aspect of the volsella varies strongly with the position of the hypopygium. In order to better understand this variation, lateral and caudal views were drawn.

Beardius cristhinae Trivinho-Strixino \& Siqueira, 2007

Material examined. Type material as in TrivinhoStrixino \& Siqueira (2007). Additional material: BRAZIL, Mato Grosso State, Culuene River, "etwa 100 Flußkilometer unterhalb der Mündung des 7 . Setembro", locality A 571-1, 1ठ, $30 . v i i i .1965$, E. J. Fittkau (ZSM).

Distribution. This species was described based on specimens from Estação Ecológica Jataí, São Paulo State, in the Atlantic Rainforest in southeastern Brazil. Now it is also recorded from the Amazon Rainforest in central Brazil.

Remarks. Morphologically the specimen from the Amazon does not differ from the type material from

Figs 16-19. Beardius urupeatan spec. nov., male. 16. Tergite IX and dorsal aspect of left gonocoxite and gonostylus. 17. Hypopygium with tergite IX removed, left dorsal aspect, right ventral aspect. 18. Lateral view of left gonocoxite, gonostylus, and volsellae. 19. Caudal view of hypopygium. Abbreviations: Gc, gonocoxite, Gs, gonostylus, IVo, inferior volsella, LStn IX, laterosternite IX, MVo, median volsella, SVo, superior volsella, TIX, tergite IX.

São Paulo. However, it is slightly smaller, with a total length of 2.8 mm (versus 3.2-3.5 mm; TrivinhoStrixino \& Siqueira 2007) and a wing length of 1.3 mm (vs. 1.5-1.7 mm).

Discussion

According to Mendes \& Pinho (2007), five Beardius species occur in Brazil. The present paper adds two more, B. fittkaui spec. nov. and B. urupeatan spec. nov. Three of the species, B. roquei, B. phytophilus and B. xylophilus, are known only from the Atlantic Rainforest in southeastern Brazil (Trivinho-Strixino
\& Strixino, 2000; Trivinho-Strixino \& Siqueira, 2007), while B. fittkaui spec. nov. has been recorded only from the type locality in the Amazon. The remaining three species, B. parcus, B. cristhinae and B. urupeatan spec. nov., have been taken both in the Amazon and in the Atlantic Rainforest; B. parcus has also been recorded from Venezuela and Mexico (Spies \& Reiss 1996).

The Brazilian distribution of B. parcus, B. cristhinae and B. urupeatan spec. nov., respectively, appears to be disjunct. The area between the Amazon and the Atlantic Rainforest consists of dryer Caatinga and Cerrado biomes, and of the wetland biome Pantanal. During the last decade the chironomid fauna in the Atlantic Rainforest have been targeted by several research projects headed by researchers from São Paulo and Santa Catarina (BIOTA-FAPESP proc. 03/10517-9 and 03/12074-9; CNPq 690143/01-0). The chironomids in the Amazon Rainforest were targeted by international researchers in the 1960s and 1970s, predominantly by Ernst J. Fittkau, Friedrich Reiss and collaborators, in cooperation with INPA. However, interest in the Amazon Rainforest has not diminished, and a recently approved project, led by Dr. Neusa Hamada, intends to continue the research on the chironomid fauna in the Manaus area and in Serra do Aracá (FAPEAM). In contrast, no projects have targeted the chironomid fauna in the Caatinga, Cerrado or Pantanal biomes, and hardly any species are recorded from the states situated between the Amazon and the Atlantic Rainforest. Thus, biogeographical assumptions concerning distribution patterns as shown by the Beardius species must await further collections in these biomes.

Acknowledgements

We are indebted to Marion Kotrba, Zoologische Staatssammlung, Munich, for the loan of the Beardius material collected by Ernst J. Fittkau. Thanks are also due to Adolfo R. Calor and Fábio O. Roque for providing additional material. The first author received funding from FAPESP (05/53026-0 and 07/55833-6), within the Biota/ FAPESP - The Biodiversity Virtual Institute Program (www.biota.org) while completing this paper.

References

Andersen, T. \& Sæther, O. A. 1996. New species and records of Beardius Reiss \& Sublette (Diptera: Chironomidae). Annales de Limnologie 32: 33-44.
Epler, J. H. 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SJ2001-SP13, North Carolina Department of Environment and Natural Resources, Raleigh, NC, \& St. Johns River Water Management District, Palatka, FL, 526 pp.
Jacobsen, R. E. \& Perry, S. A. 2000. A review of Beardius Reiss \& Sublette, with the description of a new species from Everglades National Park, Florida (Insecta, Diptera, Chironomidae). Spixiana 23: 129-144.
Mendes, H. F. \& Pinho, L. C. 2007. Diptera: Chironomidae. In: Levantamento e biologia de Insecta e Oligochaeta aquáticos de sistemas lóticos do Estado de São Paulo. Available from: http://sites.ffclrp. usp.br/aguadoce/chironomidae/chiroindex.htm [accessed 25 April 2007]
Reiss, F. \& Sublette, J. E. 1985. Beardius new genus with notes on additional Pan-American taxa (Diptera, Chironomidae). Spixiana, Supplement 11: 179193.

Sæther, O. A. 1969. Some Nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). Bulletin of the Fisheries Research Board of Canada 170: 1-154.

- - 1980. Glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomologica scandinavica, Supplement 14: 1-51.
Spies M. \& Reiss, F. 1996. Catalog and bibliography of Neotropical and Mexican Chironomidae (Insecta, Diptera). Spixiana, Supplement 22: 61-119.
Tokeshi, M. 1995. Life cycles and population dynamics. Pp. 225-268 in: Armitage, P. D., Cranston, P. S. \& Pinder, L. C. V. (eds): The Chironomidae: Biology and Ecology of Non-biting Midges. London (Chapman \& Hall).
Trivinho-Strixino, S. \& Siqueira, T. 2007. New species of Beardius Reiss \& Sublette, 1985 (Diptera: Chironomidae) from Southeastern Brazil. Pp. 281-286 in: Andersen, T. (ed.): Contributions to the Systematics and Ecology of Aquatic Diptera: A Tribute to Ole A. Sæther. Ohio (The Caddis Press, Columbus).
Trivinho-Strixino, S. \& Strixino, G. 2000. Two new species of Beardius Reiss \& Sublette (Diptera, Chironomidae) from southeastern Brazil. Pp. 245-250 in: Hoffrichter, O. (ed.): Late 20th Century Research on Chironomidae: An Anthology from the 13th International Symposium on Chironomidae. Aachen (Shaker Verlag).

